SWIG-4.2 Documentation

SWIG-4.2 Documentation

SWIG-4.2 Documentation

« Sections
o SWIG Core Documentation
o Supported Language Modules Documentation
o Experimental Language Modules Documentation
o Developer Documentation

1 Preface

« 1.1 Introduction

« 1.2 SWIG Versions

« 1.3 SWIG License

« 1.4 SWIG resources

« 1.5 Prerequisites

« 1.6 Organization of this manual

« 1.7 How to avoid reading the manual

« 1.8 Backwards compatibility

« 1.9 Release notes

« 1.10 Credits

o 1.11 Bug reports

« 1.12 Installation
o 1.12.1 Windows installation
o 1.12.2 Unix installation
o 1.12.3 Macintosh OS X installation
o 1.12.4 Testing
o 1.12.5 Examples

2 Introduction

e 2.1 What is SWIG?
o 2.2 Why use SWIG?
o 2.3 Target languages
o 2.3.1 Supported status
o 2.3.2 Experimental status
o 2.4 A SWIG example
o 2.4.1 SWIG interface file
o 2.4.2 The swig command
o 2.4.3 Building a Perl5 module
o 2.4.4 Building a Python module
o 2.4.5 Shortcuts
« 2.5 Supported C/C++ language features
« 2.6 Non-intrusive interface building
« 2.7 Incorporating SWIG into a build system
« 2.8 Hands off code generation
* 2.9 SWIG and freedom

3 Getting started on Windows

« 3.1 Installation on Windows
o 3.1.1 Windows Executable
« 3.2 SWIG Windows Examples

Table of Contents

o 3.2.1 Instructions for using the Examples with Visual Studio

» 3211C#

= 3.2.1.2 Java
= 3.2.1.3 Perl
3.2.1.4 Python

o 3.2.2 Instructions for using the Examples with other compilers

« 3.3 Building swig.exe on Windows
o 3.3.1 Building swig.exe using CMake
o 3.3.2 Building swig.exe using MSYS2
o 3.3.3 Building swig.exe using MinGW and MSYS
o 3.3.4 Building swig.exe using Cygwin

= 3.3.4.1 Running the examples on Windows using Cygwin

« 3.4 Microsoft extensions and other Windows quirks

4 Scripting Languages

« 4.1 The two language view of the world

» 4.2 How does a scripting language talk to C?
o 4.2.1 Wrapper functions
o 4.2.2 Variable linking
o 4.2.3 Constants
o 4.2.4 Structures and classes
o 4.2.5 Proxy classes

« 4.3 Building scripting language extensions
o 4.3.1 Shared libraries and dynamic loading
o 4.3.2 Linking with shared libraries
o 4.3.3 Static linking

5 SWIG Basics

« 5.1 Running SWIG
o 5.1.1 Input format

SWIG-4.2 Documentation

o 5.1.2 SWIG Output

o 5.1.3 Comments

o 5.1.4 C Preprocessor

o 5.1.5 SWIG Directives
o 5.1.6 Parser Limitations

« 5.2 Wrapping Simple C Declarations

o 5.2.1 Basic Type Handling
o 5.2.2 Global Variables
o 5.2.3 Constants
o 5.2.4 A brief word about const
o 5.2.5 A cautionary tale of char *
5.3 Pointers and complex objects
o 5.3.1 Simple pointers
o 5.3.2 Run time pointer type checking
o 5.3.3 Derived types. structs. and classes
o 5.3.4 Undefined datatypes
o 5.3.5 Typedef
5.4 Other Practicalities
o 5.4.1 Passing structures by value
o 5.4.2 Return by value
o 5.4.3 Linking to structure variables
o 5.4.4 Linking to char *
o 5.4.5 Arrays
o 5.4.6 Creating read-only variables
o 5.4.7 Renaming and ignoring declarations
= 5.4.7.1 Simple renaming of specific identifiers
= 5.4.7.2 Ignoring identifiers
» 5.4.7.3 Advanced renaming support
= 5.4.7.4 Limiting global renaming rules
= 5.4.7.5 Ignoring everything then wrapping a few selected symbols
o 5.4.8 Default/optional arguments
o 5.4.9 Pointers to functions and callbacks
5.5 Structures and unions
o 5.5.1 Typedef and structures
o 5.5.2 Character strings and structures
o 5.5.3 Array members
o 5.5.4 Structure data members

5.5.5 C constructors and destructors
5.5.6 Adding member functions to C structures
o 5.5.7 Nested structures
o 5.5.8 Other things to note about structure wrapping
5.6 Code Insertion
o 5.6.1 The output of SWIG
o 5.6.2 Code insertion blocks
o 5.6.3 Inlined code blocks
o 5.6.4 Initialization blocks
5.7 An Interface Building Strategy
o 5.7.1 Preparing a C program for SWIG
o 5.7.2 The SWIG interface file
o 5.7.3 Why use separate interface files?
o 5.7.4 Getting the right header files
o 5.7.5 What to do with main()

6 SWIG and C++

6.1 Comments on C++ Wrapping
6.2 Approach
6.3 Supported C++ features
6.4 Command line options and compilation
6.5 Proxy classes
o 6.5.1 Construction of proxy classes
o 6.5.2 Resource management in proxies
> 6.5.3 Language specific details
6.6 Simple C++ wrapping
o 6.6.1 Constructors and destructors
o 6.6.2 Default constructors, copy constructors and implicit destructors
o 6.6.3 When constructor wrappers aren't created
o 6.6.4 Copy constructors
o 6.6.5 Member functions
o 6.6.6 Static members
o 6.6.7 Member data
6.7 Protection
6.8 Enums and constants
6.9 Friends
o 6.9.1 Friend classes
o 6.9.2 Friend function definitions
o 6.9.3 Friend function declarations
o 6.9.4 Unqualified friend functions
6.10 References and pointers
6.11 Pass and return by value
6.12 Inheritance
6.13 A brief discussion of multiple inheritance. pointers. and type checking
6.14 Default arguments
6.15 Overloaded functions and methods
o 6.15.1 Dispatch function generation
o 6.15.2 Ambiguity in overloading
o 6.15.3 Renaming and ambiguity resolution
o 6.15.4 Comments on overloading
6.16 Overloaded operators
6.17 Class extension
o 6.17.1 Replacing class methods
6.18 Templates
o 6.18.1 The %template directive
6.18.2 Function templates
6.18.3 Default template arguments
6.18.4 Template base classes
6.18.5 Empty template instantiation
6.18.6 Template specialization
6.18.7 Member templates
6.18.8 Scoping and templates
o 6.18.9 More on templates
6.19 Namespaces

© 0 00 0 0o o

SWIG-4.2 Documentation

o 6.19.1 The nspace feature for namespaces
« 6.20 Renaming templated types in namespaces
» 6.21 Exception specifications
« 6.22 Exception handling with %catches
« 6.23 Pointers to Members
» 6.24 Smart pointers and operator->()
« 6.25 C++ reference counted objects - ref/unref feature
« 6.26 Using declarations and inheritance
o 6.27 Nested classes
« 6.28 A brief rant about const-correctness
« 6.29 Callbacks to the target language
o 6.29.1 Introduction to director classes
o 6.29.2 Using directors and target language callbacks
« 6.30 Where to go for more information

7 SWIG and C++11

e 7.1 Introduction
« 7.2 Core language changes
o 7.2.1 Rvalue reference and move semantics
= 7.2.1.1 Rvalue reference inputs
= 7.2.1.2 Rvalue reference outputs
= 7.2.1.3 Movable and move-only types by value
o 7.2.2 Generalized constant expressions
o 7.2.3 Extern template
o 7.2.4 Initializer lists
o 7.2.5 Uniform initialization
o 7.2.6 Type inference
o 7.2.7 Range-based for-loop
o 7.2.8 Lambda functions and expressions
o 7.2.9 Alternate function syntax
o 7.2.10 Object construction improvement
o 7.2.11 Explicit overrides and final
o 7.2.12 Null pointer constant
o 7.2.13 Strongly typed enumerations
o 7.2.14 Double angle brackets
o 7.2.15 Explicit conversion operators
o 7.2.16 Type alias and alias templates

7.2.17 Unrestricted unions
7.2.18 Variadic templates
7.2.19 New character literals
7.2.20 New string literals
7.2.21 User-defined literals
7.2.22 Thread-local storage
7.2.23 Explicitly defaulted functions and deleted functions
7.2.24 Type long long int
7.2.25 Static assertions
7.2.26 Allow sizeof to work on members of classes without an explicit object
7.2.27 Exception specifications and noexcept
7.2.28 Control and query object alignment
7.2.29 Attributes
7.2.30 Methods with ref-qualifiers
« 7.3 Standard library changes

o 7.3.1 Threading facilities

o 7.3.2 Tuple types

o 7.3.3 Hash tables

o 7.3.4 Regular expressions

o 7.3.5 General-purpose smart pointers

o 7.3.6 Extensible random number facility

o 7.3.7 Wrapper reference

7.3.8 Polymorphic wrappers for function objects

7.3.9 Type traits for metaprogramming
7.3.10 Uniform method for computing return type of function objects

8 SWIG and C++14

« 8.1 Introduction
« 8.2 Core language changes
o 8.2.1 Binary integer literals
o 8.2.2 Return type deduction
« 8.3 Standard library changes

9 SWIG and C++17

« 9.1 Introduction

« 9.2 Core language changes
o 9.2.1 Nested namespace definitions
o 9.2.2 UTF-8 character literals
o 9.2.3 Hexadecimal floating literals

« 9.3 Standard library changes

10 SWIG and C++20

¢ 10.1 Introduction
« 10.2 Core language changes

o 10.2.1 Spaceship operator

o 10.2.2 Lambda templates

o 10.2.3 Constexpr destructors
« 10.3 Standard library changes

11 Preprocessing

« 11.1 File inclusion

« 11.2 File imports

« 11.3 Conditional Compilation

o 11.4 Macro Expansion

« 11.5 SWIG Macros

« 11.6 C99 and GNU Extensions

o 11.7 Preprocessing and delimiters
o 11.7.1 Preprocessing and %f{ ...
o 11.7.2 Preprocessing and { ... } delimiters

« 11.8 Preprocessor and Typemaps

« 11.9 Viewing preprocessor output

« 11.10 The #error and #warning directives

12 SWIG library

¢ 12.1 The %include directive and library search path
« 12.2 C arrays and pointers
o 12.2.1 argcargv.i
o 12.2.2 cpointer.i
o 12.2.3 carrays.i
o 12.2.4 cmalloc.i
o 12.2.5 cdata.i
« 12.3 C string handling
o 12.3.1 Default string handling
o 12.3.2 Passing binary data
o 12.3.3 Using %newobject to release memory
o 12.3.4 cstring.i
e 12.4 STL/C++ library
o 12.4.1 std::string
o 12.4.2 std::string_view
o 12.4.3 std::vector
o 12.4.4 STL exceptions
o 12.4.5 shared ptr smart pointer
= 12.4.5.1 shared_ptr basics
» 12.4.5.2 shared_ptr and inheritance
= 12.4.5.3 shared_ptr and method overloading
= 12.4.5.4 shared_ptr and templates
» 12.4.5.5 shared_ptr and directors
o 12.4.6 unique_ptr smart pointer
o 12.4.7 auto_ptr smart pointer
o 12.5 Utility Libraries
o 12.5.1 exception.i
o 12.5.2 attribute.i
= 12.5.2.1 %attribute and C++ templates

13 Argument Handling

e 13.1 The typemaps.i library
o 13.1.1 Introduction
o 13.1.2 Input parameters
o 13.1.3 Output parameters
o 13.1.4 Input/Output parameters
o 13.1.5 Using different names
« 13.2 Applying constraints to input values
o 13.2.1 Simple constraint example
o 13.2.2 Constraint methods
o 13.2.3 Applying constraints to new datatypes

14 Typemaps

o 14.1 Introduction
o 14.1.1 Type conversion
14.1.2 Typemaps
14.1.3 Pattern matching
14.1.4 Reusing typemaps
14.1.5 What can be done with typemaps?
14.1.6 What can't be done with typemaps?
14.1.7 Similarities to Aspect Oriented Programming
14.1.8 The rest of this chapter

© 00 0 0 o0 o0

« 14.2 Typemap specifications

o 14.2.1 Defining a typemap
o 14.2.2 Typemap scope

o 14.2.3 Copying a typemap
o 14.2.4 Deleting a typemap
o 14.2.5 Placement of typemaps

« 14.3 Pattern matching rules

o 14.3.1 Basic matching rules

14.3.2 Typedef reductions matching

14.3.3 Default typemap matching rules

14.3.4 Multi-arguments typemaps

14.3.5 Matching rules compared to C++ templates
o 14.3.6 Debugging typemap pattern matching

°
°
°
°

« 14.4 Code generation rules

o 14.4.1 Scope
o 14.4.2 Declaring new local variables
o 14.4.3 Special variables
o 14.4.4 Special variable macros
= 14.4.4.1 $descriptor(type)
= 14.4.4.2 $typemap(method, typepattern)
» 14.4.4.3 $typemap(method:attribute, typepattern
o 14.4.5 Special variables and typemap attributes
o 14.4.6 Special variables combined with special variable macros

¢ 14.5 Common typemap methods

o 14.5.1 "in" typemap
14.5.2 "typecheck” typemap
14.5.3 "out" typemap
14.5.4 "arginit" typemap
14.5.5 "default" typemap
14.5.6 "check" typemap
14.5.7 "argout" typemap
14.5.8 "freearg" typemap
14.5.9 "newfree" typemap
14.5.10 "ret" typemap
14.5.11 "memberin” typemap
14.5.12 "varin" typemap
14.5.13 "varout" typemap
14.5.14 "throws" typemap
14.6 Some typemap examples
o 14.6.1 Typemaps for arrays
o 14.6.2 Implementing constraints with typemaps
14.7 Typemaps for multiple target languages
14.8 Optimal code generation when returning by value
14.9 Multi-argument typemaps
14.10 Typemap warnings

© 0 00000000 0 0

°

SWIG-4.2 Documentation

SWIG-4.2 Documentation

« 14.11 Typemap fragments
o 14.11.1 Fragment type specialization
o 14.11.2 Fragments and automatic typemap specialization
14.12 The run-time type checker
o 14.12.1 Implementation
o 14.12.2 Usage
« 14.13 Typemaps and overloading
o 14.13.1 SWIG_TYPECHECK_POINTER precedence level and the typecheck typemap
14.14 More about %apply and %clear
14.15 Passing data between typemaps

14.16 C++ "this" pointer
14.17 Where to go for more information?

15 Customization Features

« 15.1 Exception handling with %exception
o 15.1.1 Handling exceptions in C code
> 15.1.2 Exception handling with longjmp()
o 15.1.3 Handling C++ exceptions
o 15.1.4 Exception handlers for variables
o 15.1.5 Defining different exception handlers
o 15.1.6 Special variables for %exception
o 15.1.7 Using The SWIG exception library
« 15.2 Object ownership and %newobject
« 15.3 Features and the %feature directive
o 15.3.1 Feature attributes
15.3.2 Feature flags
15.3.3 Clearing features
15.3.4 Features and default arguments
15.3.5 Feature example

o
°
°
o

16 Contracts

« 16.1 The %contract directive
« 16.2 %contract and classes

« 16.3 Constant aggregation and %aggregate_check
« 16.4 Notes

17 Variable Length Arguments

e 17.1 Introduction

17.2 The Problem

17.3 Default varargs support

17.4 Argument replacement using %varargs
17.5 Varargs and typemaps

17.6 Varargs wrapping with libffi

17.7 Wrapping of va_list

17.8 C++ Issues
17.9 Discussion

18 SWIG and Doxygen Translation

« 18.1 Doxygen translation overview
« 18.2 Preparations
o 18.2.1 Enabling Doxygen translation
o 18.2.2 Doxygen-specific %feature directives
= 18.2.2.1 doxygen:notranslate
= 18.2.2.2 doxygen:alias:<command-name>
= 18.2.2.3 doxygen:ignore:<command-name>
= 18.2.2.4 doxygen:nolinktranslate
= 18.2.2.5 doxygen:nostripparams
o 18.2.3 Additional command line options
« 18.3 Doxygen to Javadoc
o 18.3.1 Basic example
o 18.3.2 Javadoc tags
> 18.3.3 Unsupported tags
o 18.3.4 Further details
« 18.4 Doxygen to Pydoc
o 18.4.1 Basic example
o 18.4.2 Pydoc translator
o 18.4.3 Unsupported tags
o 18.4.4 Further details
« 18.5 Troubleshooting
o 18.5.1 Problem with conditional compilation
«» 18.6 Developer information
o 18.6.1 Doxygen translator design
o 18.6.2 Debugging the Doxygen parser and translator
o 18.6.3 Tests
« 18.7 Extending to other languages

19 Warning Messages

19.1 Introduction

19.2 Warning message suppression

19.3 Enabling extra warnings

19.4 Issuing a warning message

19.5 Symbolic symbols

19.6 Commentary

19.7 Warnings as errors

19.8 Message output format

19.9 Warning number reference
o 19.9.1 Deprecated features (100-199
o 19.9.2 Preprocessor (200-299)
o 19.9.3 C/C++ Parser (300-399)
o 19.9.4 Types and typemaps (400-499)
o 19.9.5 Code generation (500-559)
o 19.9.6 Doxygen comments (560-599)
o 19.9.7 Language module specific (700-899
o 19.9.8 User defined (900-999)

« 19.10 History

20 Working with Modules

¢ 20.1 Modules Introduction

SWIG-4.2 Documentation

20.2 Basics

20.3 The SWIG runtime code

20.4 External access to the runtime

20.5 A word of caution about static libraries
20.6 References

20.7 Reducing the wrapper file size

21 Using SWIG with ccache - ccache-swig(1) manpage

« 21.1 NAME

21.2 SYNOPSIS

21.3 DESCRIPTION

21.4 OPTIONS SUMMARY

21.5 OPTIONS

21.6 INSTALLATION

21.7 EXTRA OPTIONS

21.8 ENVIRONMENT VARIABLES
21.9 CACHE SIZE MANAGEMENT
21.10 CACHE COMPRESSION

21.11 HOW IT WORKS

21.12 USING CCACHE WITH DISTCC
21.13 SHARING A CACHE

21.14 HISTORY

21.15 DIFFERENCES FROM COMPILERCACHE
21.16 CREDITS

21.17 AUTHOR

22 SWIG and Android

« 22.1 Overview

« 22.2 Android examples
o 22.2.1 Examples introduction
o 22.2.2 Simple C example
o 22.2.3 C++ class example

o 22.2.4 Other examples
e 22.3C++STL

23 SWIG and C#

23.1 Introduction
o 23.1.1 SWIG 2 Compatibility
o 23.1.2 Additional command line options
23.2 Differences to the Java module
23.3 Type mapping
o 23.3.1 Primitive types
o 23.3.2 Other types
o 23.3.3 Void pointers
23.4 C# Arrays
o 23.4.1 The SWIG C arrays library
o 23.4.2 Managed arrays using P/Invoke default array marshalling
o 23.4.3 Managed arrays using pinning
23.5 C# Exceptions
o 23.5.1 C# exception example using "check" typemap
o 23.5.2 C# exception example using %exception
o 23.5.3 C# exception example using exception specifications
o 23.5.4 Custom C# ApplicationException example
23.6 C# Directors
o 23.6.1 Directors example
o 23.6.2 Directors implementation
o 23.6.3 Director caveats
23.7 Multiple modules
23.8 C# named and optional arguments
23.9 C# Typemap examples
o 23.9.1 Memory management when returning references to member variables
o 23.9.2 Memory management for objects passed to the C++ layer
o 23.9.3 Date marshalling using the csin typemap and associated attributes
o 23.9.4 A date example demonstrating marshalling of C# properties
o 23.9.5 Date example demonstrating the 'pre' and 'post' typemap attributes for directors

23.9.6 Turning proxy classes into partial classes

23.9.7 Turning proxy classes into sealed classes
23.9.8 Extending proxy classes with additional C# code
23.9.9 Underlying type for enums

24 SWIG and D

24.1 Introduction
24.2 Command line invocation
24.3 Typemaps
24.3.1 C# <-> D name comparison
24.3.2 ctype, imtype, dtype
24.3.3 in, out. directorin, directorout
24.3.4 din. dout, ddirectorin, ddirectorout
24.3.5 typecheck typemaps
24.3.6 Code injection typemaps
o 24.3.7 Special variable macros
24.4 Other D code control features
o 24.4.1 D begin
o 24.4.2 D and %feature
24.5 Pragmas
24.6 D Exceptions
24.7 D Directors
24.8 Other features
o 24.8.1 Extended namespace support (nspace)
o 24.8.2 Native pointer support
o 24.8.3 Operator overloading
o 24.8.4 Running the test-suite
24.9 D Typemap examples
24.10 Work in progress and planned features

25 SWIG and Go

.
© 0o 0 o0 0o o

¢ 25.1 Overview
« 25.2 Examples

« 25.3 Running SWIG with Go
o 25.3.1 Go-specific Commandline Options
o 25.3.2 Generated Wrapper Files
« 25.4 A tour of basic C/C++ wrapping
o 25.4.1 Go Package Name
25.4.2 Go Names
25.4.3 Go Constants
25.4.4 Go Enumerations
25.4.5 Go Classes
= 25.4.5.1 Go Class Memory Management
= 25.4.5.2 Go Class Inheritance
25.4.6 Go Templates
25.4.7 Go and C/C++ Threads
25.4.8 Go and C++ Exceptions
25.4.9 Go Director Classes
= 25.4.9.1 Example C++ code
25.4.9.2 Enable director feature
25.4.9.3 Constructor and destructor
25.4.9.4 Override virtual methods
25.4.9.5 Call base methods
25.4.9.6 Subclass via embedding
25.4.9.7 Memory management with runtime.SetFinalizer
25.4.9.8 Complete FooBarGo example class
25.4.10 Default Go primitive type mappings
25.4.11 Output arguments
25.4.12 Adding additional go code
25.4.13 Go typemaps

o
°
°
o

o o o o

o 0o o o

26 SWIG and Guile

26.1 Supported Guile Versions

26.2 Meaning of "Module"

26.3 Old GH Guile API

26.4 Linkage
o 26.4.1 Simple Linkage
o 26.4.2 Passive Linkage
o 26.4.3 Native Guile Module Linkage
o 26.4.4 Old Auto-Loading Guile Module Linkage
o 26.4.5 Hobbit4D Linkage

26.5 Underscore Folding

26.6 Typemaps

« 26.7 Representation of pointers as smobs
o 26.7.1 Smobs
o 26.7.2 Garbage Collection

26.8 Native Guile pointers

26.9 Exception Handling

26.10 Procedure documentation

26.11 Procedures with setters

26.12 GOOPS Proxy Classes
o 26.12.1 Naming Issues
o 26.12.2 Linking

27 SWIG and Java

e 27.1 Overview
o 27.2 Preliminaries
o 27.2.1 Running SWIG
o 27.2.2 Additional Commandline Options
27.2.3 Getting the right header files
27.2.4 Compiling a dynamic module
27.2.5 Using your module
27.2.6 Dynamic linking problems
27.2.7 Compilation problems and compiling with C++
27.2.8 Building on Windows
= 27.2.8.1 Running SWIG from Visual Studio
= 27.2.8.2 Using NMAKE
« 27.3 A tour of basic C/C++ wrapping
o 27.3.1 Modules. packages and generated Java classes
o 27.3.2 Functions
o 27.3.3 Global variables
o 27.3.4 Constants
o 27.3.5 Enumerations
= 27.3.5.1 Anonymous enums
» 27.3.5.2 Typesafe enums
= 27.3.5.3 Proper Java enums
= 27.3.5.4 Type unsafe enums
= 27.3.5.5 Simple enums
27.3.6 Pointers
27.3.7 Structures
27.3.8 C++ classes
27.3.9 C++ inheritance
27.3.10 Pointers. references. arrays and pass by value
= 27.3.10.1 Null pointers
o 27.3.11 C++ overloaded functions
o 27.3.12 C++ default arguments
o 27.3.13 C++ namespaces
o 27.3.14 C++ templates
o 27.3.15 C++ Smart Pointers
= 27.3.15.1 The shared_ptr Smart Pointer
» 27.3.15.2 Generic Smart Pointers
27.4 Further details on the generated Java classes
o 27.4.1 The intermediary JNI class
s 27.4.1.1 The intermediary JNI class pragmas
o 27.4.2 The Java module class
= 27.4.2.1 The Java module class pragmas
o 27.4.3 Java proxy classes
= 27.4.3.1 Memory management
= 27.4.3.2 Inheritance
= 27.4.3.3 Proxy classes and garbage collection

°
°
o
°
°
o

© 0o 0o 0o o

= 27.4.3.4 The premature garbage collection prevention parameter for proxy class marshalling

= 27.4.3.5 Single threaded applications and thread safety
o 27.4.4 Type wrapper classes

SWIG-4.2 Documentation

SWIG-4.2 Documentation

o 27.4.5 Enum classes
= 27.4.5.1 Typesafe enum classes
= 27.4.5.2 Proper Java enum classes
= 27.4.5.3 Type unsafe enum classes
o 27.4.6 Interfaces
« 27.5 Cross language polymorphism using directors
o 27.5.1 Enabling directors
27.5.2 Director classes
27.5.3 Overhead and code bloat
27.5.4 Simple directors example
27.5.5 Director threading issues
27.5.6 Director performance tuning
27.5.7 Java exceptions from directors
= 27.5.7.1 Customizing director exceptions
« 27.6 Accessing protected members
« 27.7 Common customization features
o 27.7.1 C/C++ helper functions
o 27.7.2 Class extension with %extend
o 27.7.3 Class extension with %proxycode
o 27.7.4 Exception handling with %exception and %javaexception
o 27.7.5 Method access with %javamethodmodifiers
o 27.7.6 Java begin
« 27.8 Tips and techniques
o 27.8.1 Input and output parameters using primitive pointers and references
o 27.8.2 Simple pointers
o 27.8.3 Wrapping C arrays with Java arrays
o 27.8.4 Unbounded C Arrays
o 27.8.5 Binary data vs Strings
o 27.8.6 Overriding new and delete to allocate from Java heap
« 27.9 Java typemaps
o 27.9.1 Default primitive type mappings
o 27.9.2 Default typemaps for non-primitive types
o 27.9.3 Sixty four bit JVMs
o 27.9.4 What is a typemap?
o 27.9.5 Typemaps for mapping C/C++ types to Java types
o 27.9.6 Java typemap attributes

© o 0o 0o 0o o

27.9.7 Java special variables
27.9.8 Typemaps for both C and C++ compilation
27.9.9 Java code typemaps
27.9.10 Director specific typemaps
e 27.10 Typemap Examples
o 27.10.1 Simpler Java enums for enums without initializers
o 27.10.2 Handling C++ exception specifications as Java exceptions
27.10.3 NaN Exception - exception handling for a particular type
27.10.4 Converting Java String arrays to char **
27.10.5 Expanding a Java object to multiple arguments
27.10.6 Using typemaps to return arguments
27.10.7 Adding Java downcasts to polymorphic return types
27.10.8 Adding an equals method to the Java classes
27.10.9 Void pointers and a common Java base class
27.10.10 Struct pointer to pointer
27.10.11 Memory management when returning references to member variables
27.10.12 Memory management for objects passed to the C++ layer
o 27.10.13 Date marshalling using the javain typemap and associated attributes
e 27.11 Living with Java Directors
27.12 Odds and ends
o 27.12.1 JavaDoc comments
o 27.12.2 Functional interface without proxy classes
o 27.12.3 Using your own JNI functions
o 27.12.4 Performance concerns and hints
o 27.12.5 Debugging
o 27.13 Java Examples

o
°
°
°
°
°
°
o
°
°

28 SWIG and Javascript

« 28.1 Overview
« 28.2 Preliminaries
o 28.2.1 Running SWIG
o 28.2.2 Running Tests and Examples
o 28.2.3 Known Issues
« 28.3 Integration
o 28.3.1 Creating node.js Extensions
= 28.3.1.1 Using yeoman to generate a Node-API skeleton
= 28.3.1.2 Troubleshooting
o 28.3.2 Embedded Webkit
= 28.3.2.1 Mac OS X
= 28.3.22 GTK
o 28.3.3 Creating Applications with node-webkit
« 28.4 Examples
o 28.4.1 Simple
o 28.4.2 Class
« 28.5 Implementation
o 28.5.1 Source Code
o 28.5.2 Code Templates
o 28.5.3 Emitter
o 28.5.4 Emitter states

28.5.5 Handling Exceptions in JavascriptCore
28.5.6 Handling Exceptions in Node-API|

29 SWIG and Lua

o 29.1 Preliminaries
¢ 29.2 Running SWIG
o 29.2.1 Additional command line options
o 29.2.2 Compiling and Linking and Interpreter
o 29.2.3 Compiling a dynamic module
o 29.2.4 Using your module
« 29.3 A tour of basic C/C++ wrapping
o 29.3.1 Modules
o 29.3.2 Functions
o 29.3.3 Global variables
o 29.3.4 Constants and enums

© 000 000000 0 O O

= 29.3.4.1 Constants/enums and classes/structures
29.3.5 Pointers
29.3.6 Structures
29.3.7 C++ classes
29.3.8 C++ inheritance
29.3.9 Pointers, references, values, and arrays
29.3.10 C++ overloaded functions
29.3.11 C++ operators
29.3.12 Class extension with %extend
29.3.13 Using %newobject to release memory
29.3.14 C++ templates
29.3.15 C++ Smart Pointers
29.3.16 C++ Exceptions
29.3.17 Namespaces
= 29.3.17.1 Compatibility Note
= 29.3.17.2 Names
= 29.3.17.3 Inheritance

29.4 Typemaps

o

°

°

o

29.4.1 What is a typemap?

29.4.2 Using typemaps

29.4.3 Typemaps and arrays

29.4.4 Typemaps and pointer-pointer functions

29.5 Writing typemaps

°

o

29.5.1 Typemaps you can write
29.5.2 SWIG's Lua-C API

29.6 Customization of your Bindings

°

o

29.6.1 Writing your own custom wrappers
29.6.2 Adding additional Lua code

29.7 Details on the Lua binding

°

°

°

29.7.1 Binding global data into the module.
29.7.2 Userdata and Metatables

29.7.3 Memory management

30 SWIG and Octave

« 30.1 Preliminaries
« 30.2 Running SWIG

°

°

o

30.2.1 Command-line options
30.2.2 Compiling a dynamic module
30.2.3 Using your module

« 30.3 A tour of basic C/C++ wrapping

31 SWIG and Perl5

°

© 0 000 0 00 0 0 O

© 0o 0o 0o o

30.3.1 Modules
30.3.2 Functions
30.3.3 Global variables
30.3.4 Constants and enums
30.3.5 Pointers
30.3.6 Structures and C++ classes
30.3.7 C++ inheritance
30.3.8 C++ overloaded functions
30.3.9 C++ operators
30.3.10 Class extension with %extend
30.3.11 C++ templates
30.3.12 C++ Smart Pointers
= 30.3.12.1 The shared_ptr Smart Pointer
= 30.3.12.2 Generic Smart Pointers
30.3.13 Directors (calling Octave from C++ code)
30.3.14 Threads
30.3.15 Memory management
30.3.16 STL support
30.3.17 Matrix typemaps

o 31.1 Overview
« 31.2 Preliminaries

o

o
o
o
o
o

°

31.2.1 Getting the right header files

31.2.2 Compiling a dynamic module

31.2.3 Building a dynamic module with MakeMaker
31.2.4 Building a static version of Perl

31.2.5 Using the module

31.2.6 Compilation problems and compiling with C++
31.2.7 Compiling for 64-bit platforms

« 31.3 Building Perl Extensions under Windows

o

o

31.3.1 Running SWIG from Developer Studio
31.3.2 Using other compilers

« 31.4 The low-level interface

o

© 00 0 0o o0 0 o0

o

31.4.1 Functions

31.4.2 Global variables

31.4.3 Constants

31.4.4 Pointers

31.4.5 Structures

31.4.6 C++ classes

31.4.7 C++ classes and type-checking
31.4.8 C++ overloaded functions
31.4.9 Operators

31.4.10 Modules and packages

31.5 Input and output parameters
31.6 Exception handling
31.7 Remapping datatypes with typemaps

o

o

o

o

31.7.1 A simple typemap example
31.7.2 Perl5 typemaps

31.7.3 Typemap variables

31.7.4 Useful functions

31.8 Typemap Examples

o

o

o

o

o

o

31.8.1 Converting a Perl5 array to a char **
31.8.2 Return values

31.8.3 Returning values from arguments
31.8.4 Accessing array structure members
31.8.5 Turning Perl references into C pointers
31.8.6 Pointer handling

31.9 Proxy classes

o

31.9.1 Preliminaries

SWIG-4.2 Documentation

SWIG-4.2 Documentation

o 31.9.2 Structure and class wrappers

o 31.9.3 Object Ownership

o 31.9.4 Nested Objects

o 31.9.5 Proxy Functions

o 31.9.6 Inheritance

o 31.9.7 Modifying the proxy methods
31.10 Adding additional Perl code
31.11 Cross language polymorphism

o 31.11.1 Enabling directors

o 31.11.2 Director classes

o 31.11.3 Ownership and object destruction
o 31.11.4 Exception unrolling

31.11.5 Overhead and code bloat
31.11.6 Typemaps

32 SWIG and PHP

32.1 Generating PHP Extensions
o 32.1.1 Building a loadable extension
o 32.1.2 Using PHP Extensions
32.2 Basic PHP interface
o 32.2.1 Constants
o 32.2.2 Global Variables
o 32.2.3 Functions
o 32.2.4 Overloading
o 32.2.5 Pointers and References
o 32.2.6 Structures and C++ classes
= 32.2.6.1 Using -noproxy
= 32.2.6.2 Constructors and Destructors
= 32.2.6.3 Static Member Variables
= 32.2.6.4 Static Member Functions
= 32.2.6.5 Specifying Implemented Interfaces
= 32.2.6.6 Dynamic Properties
o 32.2.7 PHP Pragmas. Startup and Shutdown code
32.3 Cross language polymorphism
o 32.3.1 Enabling directors
32.3.2 Director classes
32.3.3 Ownership and object destruction
32.3.4 Exception unrolling
32.3.5 Overhead and code bloat
32.3.6 Typemaps
32.3.7 Miscellaneous

o
o
o
o
o
o

33 SWIG and Python

33.1 Overview
33.2 Preliminaries
33.2.3 Hand compiling a dynamic module
33.2.4 Static linking
33.2.5 Using your module
33.2.6 Compilation of C++ extensions
33.2.7 Compiling for 64-bit platforms
33.2.8 Building Python extensions under Windows
33.2.9 Additional Python commandline options
33.3 A tour of basic C/C++ wrapping
o 33.3.1 Modules
33.3.2 Functions
33.3.3 Global variables
33.3.4 Constants and enums
33.3.5 Pointers
33.3.6 Structures
33.3.7 C++ classes
33.3.8 C++ inheritance
33.3.9 Pointers, references. values, and arrays
33.3.10 C++ overloaded functions
33.3.11 C++ operators
33.3.12 C++ namespaces
33.3.13 C++ templates
33.3.14 C++ Smart Pointers
= 33.3.14.1 The shared_ptr Smart Pointer
= 33.3.14.2 Generic Smart Pointers
o 33.3.15 C++ reference counted objects
33.4 Further details on the Python class interface
o 33.4.1 Proxy classes
o 33.4.2 Built-in Types
= 33.4.2.1 Limitations
= 33.4.2.2 Operator overloads and slots -- use them!
o 33.4.3 Memory management
33.5 Cross language polymorphism
o 33.5.1 Enabling directors
o 33.5.2 Director classes
> 33.5.3 Ownership and object destruction
o 33.5.4 Exception unrolling
o 33.5.5 Overhead and code bloat
o 33.5.6 Typemaps
o 33.5.7 Miscellaneous
33.5.8 Stable ABI
33.6 Common customization features
o 33.6.1 C/C++ helper functions
o 33.6.2 Adding additional Python code
o 33.6.3 Class extension with %extend
o 33.6.4 Exception handling with %exception
o 33.6.5 Optimization options
= 33.6.5.1 -fastproxy
33.7 Tips and techniques
o 33.7.1 Input and output parameters
o 33.7.2 Simple pointers
o 33.7.3 Unbounded C Arrays
o 33.7.4 String handling
o 33.7.5 Default arguments

o
o
o
o
o
o
o
o

°

© 0 000 0000 O0OOO

°

10

SWIG-4.2 Documentation

« 33.8 Typemaps
o 33.8.1 What is a typemap?
o 33.8.2 Python typemaps
o 33.8.3 Typemap variables
o 33.8.4 Useful Python Functions
« 33.9 Typemap Examples
33.9.1 Converting a Python list to a char **
33.9.2 Expanding a Python object into multiple arguments
33.9.3 Using typemaps to return arguments
33.9.4 Mapping Python tuples into small arrays
33.9.5 Mapping sequences to C arrays
33.9.6 Pointer handling
o 33.9.7 Memory management when returning references to member variables
« 33.10 Docstring Features
o 33.10.1 Module docstring
o 33.10.2 %feature("autodoc")
= 33.10.2.1 %feature("autodoc”, "0")
= 33.10.2.2 %feature("autodoc”, "1")
= 33.10.2.3 %feature("autodoc", "2")
= 33.10.2.4 %feature("autodoc”, "3")
= 33.10.2.5 %feature("autodoc”, "docstring"
o 33.10.3 %feature("docstring")
o 33.10.4 Doxygen comments
« 33.11 Python Packages
o 33.11.1 Setting the Python package
o 33.11.2 Absolute and relative imports
o 33.11.3 Enforcing absolute import semantics
o 33.11.4 Importing from __init__.py
o 33.11.5 Implicit namespace packages
o 33.11.6 Location of modules
= 33.11.6.1 Both modules in the same package
= 33.11.6.2 Both modules are global
= 33.11.6.3 Split modules custom configuration
= 33.11.6.4 More on customizing the module import code
= 33.11.6.5 Statically linked C modules
« 33.12 Python 3 Support
o 33.12.1 Python function annotations and variable annotations
» 33.12.1.1 C/C++ annotation types
o 33.12.2 Buffer interface
o 33.12.3 Abstract base classes
o 33.12.4 Byte string output conversion
o 33.12.5 Python 2 Unicode
« 33.13 Support for Multithreaded Applications
o 33.13.1 Ul for Enabling Multithreading Support
o 33.13.2 Multithread Performance

© 0 0 o0 0o o

34 SWIG and R

34.1 Bugs
34.2 Using R and SWIG
34.3 Precompiling large R files
34.4 General policy
34.5 Language conventions
34.6 C++ classes
o 34.6.1 Examples
e 34.7 Enumerations

35 SWIG and Rub

« 35.1 Preliminaries
35.1.1 Running SWIG

o 35.1.2 Getting the right header files
o 35.1.3 Compiling a dynamic module

35.1.4 Using your module
35.1.5 Static linking
o 35.1.6 Compilation of C++ extensions
« 35.2 Building Ruby Extensions under Windows 95/NT
o 35.2.1 Running SWIG from Developer Studio
« 35.3 The Ruby-to-C/C++ Mapping
o 35.3.1 Modules
o 35.3.2 Functions
o 35.3.3 Variable Linking
o 35.3.4 Constants
o 35.3.5 Pointers
o 35.3.6 Structures
o 35.3.7 C++ classes
o 35.3.8 C++ Inheritance
o 35.3.9 C++ Overloaded Functions

35.3.10 C++ Operators
35.3.11 C++ namespaces

35.3.12 C++ templates
35.3.13 C++ Standard Template Library (STL

35.3.14 C++ STL Functors
35.3.15 C++ STL lterators
35.3.16 C++ Smart Pointers
= 35.3.16.1 The shared_ptr Smart Pointer
= 35.3.16.2 Generic Smart Pointers
o 35.3.17 Cross-Language Polymorphism
= 35.3.17.1 Exception Unrolling

« 35.4 Naming
o 35.4.1 Defining Aliases
o 35.4.2 Predicate Methods
o 35.4.3 Bang Methods
o 35.4.4 Getters and Setters
« 35.5 Input and output parameters
« 35.6 Exception handling
o 35.6.1 Using the %exception directive
o 35.6.2 Handling Ruby Blocks
o 35.6.3 Raising exceptions
o 35.6.4 Exception classes
« 35.7 Typemaps
o 35.7.1 What is a typemap?

35.7.2 Typemap scope
35.7.3 Copying a typemap
35.7.4 Deleting a typemap
35.7.5 Placement of typemaps
35.7.6 Ruby typemaps
= 35.7.6.1 "in" typemap
35.7.6.2 "typecheck" typemap
35.7.6.3 "out" typemap
35.7.6.4 "arginit" typemap
35.7.6.5 "default" typemap
35.7.6.6 "check” typemap
35.7.6.7 "argout" typemap
35.7.6.8 "freearg" typemap
35.7.6.9 "newfree" typemap
35.7.6.10 "memberin" typemap
35.7.6.11 "varin" typemap
35.7.6.12 "varout" typemap
35.7.6.13 "throws" typemap
35.7.6.14 directorin typemap
35.7.6.15 directorout typemap
35.7.6.16 directorargout typemap
35.7.6.17 ret typemap
35.7.6.18 globalin typemap
35.7.7 Typemap variables
o 35.7.8 Useful Functions
= 35.7.8.1 C Datatypes to Ruby Objects
= 35.7.8.2 Ruby Objects to C Datatypes
» 35.7.8.3 Macros for VALUE
= 35.7.8.4 Exceptions
» 35.7.8.5 lterators
35.7.9 Typemap Examples
35.7.10 Converting a Ruby array to a char **
35.7.11 Collecting arguments in a hash
35.7.12 Pointer handling
= 35.7.12.1 Ruby Datatype Wrapping
35.7.13 Example: STL Vector to Ruby Array
35.8 Docstring Features
o 35.8.1 Module docstring
o 35.8.2 %feature("autodoc")
= 35.8.2.1 %feature("autodoc”, "0")
» 35.8.2.2 %feature("autodoc”, "1")
= 35.8.2.3 %feature("autodoc", "2")
= 35.8.2.4 %feature("autodoc”, "3")
» 35.8.2.5 %feature("autodoc”, "docstring")
o 35.8.3 %feature("docstring")
35.9 Advanced Topics
o 35.9.1 Operator overloading
o 35.9.2 Creating Multi-Module Packages
o 35.9.3 Specifying Mixin Modules
35.10 Memory Management
o 35.10.1 Mark and Sweep Garbage Collector
o 35.10.2 Object Ownership
o 35.10.3 Object Tracking
o 35.10.4 Mark Functions

© 0o 0o 0o o

°

o o o o

°

35.10.5 Free Functions
35.10.6 Embedded Ruby and the C++ Stack

36 SWIG and Scilab

36.1 Preliminaries
36.2 Running SWIG
o 36.2.1 Generating the module
o 36.2.2 Building the module
o 36.2.3 Loading the module
o 36.2.4 Using the module
o 36.2.5 Scilab command line options
36.3 A basic tour of C/C++ wrapping
o 36.3.1 Overview
36.3.2 Identifiers
o 36.3.3 Functions
= 36.3.3.1 Argument passing
» 36.3.3.2 Multiple output arguments
36.3.4 Global variables
36.3.5 Constants and enumerations
= 36.3.5.1 Constants
= 36.3.5.2 Enumerations
36.3.6 Pointers
= 36.3.6.1 Utility functions
= 36.3.6.2 Null pointers:
36.3.7 Structures
36.3.8 C++ classes
36.3.9 C++ inheritance
36.3.10 C++ overloading
36.3.11 Pointers, references, values, and arrays
36.3.12 C++ templates
36.3.13 C++ operators
36.3.14 C++ namespaces
36.3.15 C++ exceptions
36.3.16 C++ STL
36.4 Type mappings and libraries
o 36.4.1 Default primitive type mappings
o 36.4.2 Arrays
o 36.4.3 Pointer-to-pointers
o 36.4.4 Matrices
o 36.4.5STL
36.5 Module initialization
36.6 Building modes
o 36.6.1 No-builder mode
o 36.6.2 Builder mode
36.7 Generated scripts
o 36.7.1 Builder script
o 36.7.2 Loader script

° o

°

°

© 00 0 00 0 0 0 0

SWIG-4.2 Documentation

12

SWIG-4.2 Documentation

o 36.7.3 Gateway XML files
« 36.8 Other resources

37 SWIG and Tcl

« 37.1 Preliminaries
o 37.1.1 Getting the right header files
37.1.2 Compiling a dynamic module
37.1.3 Static linking
37.1.4 Using your module
37.1.5 Compilation of C++ extensions
37.1.6 Compiling for 64-bit platforms
37.1.7 Setting a package prefix
o 37.1.8 Using namespaces
« 37.2 Building Tcl/Tk Extensions under Windows 95/NT
o 37.2.1 Running SWIG from Developer Studio
o 37.2.2 Using NMAKE
« 37.3 A tour of basic C/C++ wrapping
o 37.3.1 Modules
37.3.2 Functions
37.3.3 Global variables
37.3.4 Constants and enums
37.3.5 Pointers
37.3.6 Structures
37.3.7 C++ classes
37.3.8 C++ inheritance
37.3.9 Pointers, references, values, and arrays
37.3.10 C++ overloaded functions
37.3.11 C++ operators
37.3.12 C++ namespaces

37.3.13 C++ templates
37.3.14 C++ Smart Pointers

37.4 Further details on the Tcl class interface
o 37.4.1 Proxy classes
o 37.4.2 Memory management
37.5 Input and output parameters
37.6 Exception handling
37.7 Typemaps
37.7.1 What is a typemap?
37.7.2 Tcl typemaps
37.7.3 Typemap variables
37.7.4 Converting a Tcl list to a char **
37.7.5 Returning values in arguments
37.7.6 Useful functions
37.7.7 Standard typemaps
o 37.7.8 Pointer handling
37.8 Turning a SWIG module into a Tcl Package.
37.9 Building new kinds of Tcl interfaces (in Tcl)
o 37.9.1 Proxy classes
37.10 Tcl/Tk Stubs

© 00 0 0o o

© 00 000000 0 O O

°

© 00 0 0 0 0

38 SWIG and MzScheme/Racket

« 38.1 Creating native structures

« 38.2 Simple example
« 38.3 External documentation

39 SWIG and OCaml

e 39.1 Preliminaries
> 39.1.1 Running SWIG
o 39.1.2 Compiling the code
o 39.1.3 The camlp4 module
o 39.1.4 Using your module
o 39.1.5 Compilation problems and compiling with C++
¢ 39.2 The low-level Ocaml/C interface
o 39.2.1 The generated module
o 39.2.2 Enums
= 39.2.2.1 Enum typing in Ocaml
o 39.2.3 Arrays
= 39.2.3.1 Simple types of bounded arrays
= 39.2.3.2 Complex and unbounded arrays
= 39.2.3.3 Using an object
= 39.2.3.4 Example typemap for a function taking float * and int
o 39.2.4 C++ Classes
= 39.2.4.1 STL vector and string Example
= 39.2.4.2 C++ Class Example
= 39.2.4.3 Compiling the example
» 39.2.4.4 Sample Session
o 39.2.5 Director Classes
= 39.2.5.1 Director Introduction
39.2.5.2 Overriding Methods in Ocaml
39.2.5.3 Director Usage Example
39.2.5.4 Creating director objects
39.2.5.5 Typemaps for directors, directorin, directorout, directorargout
39.2.5.6 directorin typemap
39.2.5.7 directorout typemap
39.2.5.8 directorargout typemap
o 39.2.6 Exceptions
« 39.3 Documentation Features
o 39.3.1 Module docstring

40 Extending SWIG to support new languages

e 40.1 Introduction
« 40.2 Prerequisites
« 40.3 The Big Picture
« 40.4 Execution Model
o 40.4.1 Preprocessing
o 40.4.2 Parsing
o 40.4.3 Parse Trees
o 40.4.4 Attribute namespaces
o 40.4.5 Symbol Tables

13

« 40.13 Further Development Information

o 40.4.6 The %feature directive

o 40.4.7 Code Generation
o 40.4.8 SWIG and XML

40.5 Primitive Data Structures

o 40.5.1 Strings
o 40.5.2 Hashes
o 40.5.3 Lists

o 40.5.4 Common operations
o 40.5.5 lterating over Lists and Hashes

> 40.5.6 I/O

40.6 Navigating and manipulating parse trees
40.7 Working with attributes
40.8 Type system

40.8.1 String encoding of types

o 40.8.2 Type construction
o 40.8.3 Type tests

40.8.4 Typedef and inheritance

40.8.5 Lvalues
o 40.8.6 Output functions

40.9 Parameters
40.10 Writing a Language Module

o 40.10.1 Execution model
40.10.2 Starting out

40.10.3 Command line options
40.10.4 Configuration and preprocessing

40.10.5 Entry point to code generation
40.10.6 Module /O and wrapper skeleton

40.10.8 Configuration files
40.10.9 Runtime support

40.10.10 Standard library files

40.10.11 User examples

40.10.12 Test driven development and the test-suite
= 40.10.12.1 Running the test-suite

o

40.10.13 Documentation

°

°

o
o
°
o
o
o 40.10.7 Low-level code generators
o
o
o
o
o

40.10.14 Coding style guidelines
40.10.15 Target language status

= 40.10.15.1 Supported status

= 40.10.15.2 Experimental status

SWIG-4.2 Documentation

o 40.10.16 Prerequisites for adding a new language module to the SWIG distribution
« 40.11 Debugging Options
« 40.12 Guide to parse tree nodes

SWIG-4.2 Documentation

Last update : SWIG-4.2.1 (24 Feb 2024)

Sections

SWIG Core Documentation

Supported Language Modules Documentation

Experimental Language Modules Documentation

Sections

Preface

Introduction

Getting started on Windows
Scripting

SWIG Basics (Read this!)
SWIG and C++

SWIG and C++11

SWIG and C++14
SWIG and C++17

SWIG and C++20

The SWIG preprocessor
The SWIG library
Argument handling
Typemaps

Customization features
Contracts

Variable length arguments

Doxygen documentation comments

Warning messages
Working with Modules
Using SWIG with ccache

Android support
C# support

D support

Go support
Guile support
Java support
Javascript support
Lua support
Octave support
Perl5 support
PHP support
Python support
R support

Ruby support
Scilab support
Tcl support

MzScheme/Racket support
OCaml support

14

SWIG-4.2 Documentation

Developer Documentation

« Extending SWIG

1 Preface

Introduction
SWIG Versions
SWIG License
SWIG resources
Prerequisites
Organization of this manual
How to avoid reading the manual
Backwards compatibility
Release notes
Credits
Bug reports
Installation
o Windows installation
o Unix installation
o Macintosh OS X installation
o Testing
o Examples

1.1 Introduction

SWIG (Simplified Wrapper and Interface Generator) is a software development tool for building scripting language interfaces to C and C++ programs. Originally developed in 1995, SWIG was
first used by scientists in the Theoretical Physics Division at Los Alamos National Laboratory for building user interfaces to simulation codes running on the Connection Machine 5

supercomputer. In this environment, scientists needed to work with huge amounts of simulation data, complex hardware, and a constantly changing code base. The use of a scripting language

interface provided a simple yet highly flexible foundation for solving these types of problems. SWIG simplifies development by largely automating the task of scripting language integration--
allowing developers and users to focus on more important problems.

Although SWIG was originally developed for scientific applications, it has since evolved into a general purpose tool that is used in a wide variety of applications--in fact almost anything where
C/C++ programming is involved.

1.2 SWIG Versions

In the late 1990's, the most stable version of SWIG was release 1.1p5. Versions 1.3.x were officially development versions and these were released over a period of 10 years starting from the
year 2000. The final version in the 1.3.x series was 1.3.40, but in truth the 1.3.x series had been stable for many years. An official stable version was released along with the decision to make
SWIG license changes and this gave rise to version 2.0.0 in 2010. Version 3.0.0 was released in 2014 focusing on adding C++11 support and C++ nested classes. Version 4.0.0 was released
in 2019 to add in Doxygen support. Some target languages were disabled as part of a clean up and others were given a new status of either 'Supported' or 'Experimental’.

1.3 SWIG License

The LICENSE file shipped with SWIG in the top level directory contains the SWIG license. For further insight into the license including the license of SWIG's output code, please visit the SWIG
legal page - https://www.swig.org/legal.html.

The license was clarified in version 2.0.0 so that the code that SWIG generated could be distributed under license terms of the user's choice/requirements and at the same time the SWIG
source was placed under the GNU General Public License version 3.

1.4 SWIG resources

The official location of SWIG related material is

https://www.swig.org

This site contains the latest version of the software, users guide, and information regarding bugs, installation problems, and implementation tricks.

You can also subscribe to the swig-user mailing list by visiting the page

https://www.swig.org/mail.html

The mailing list often discusses some of the more technical aspects of SWIG along with information about beta releases and future work.

Git and Subversion access to the latest version of SWIG is also available. More information about this can be obtained at:

SWIG Bleeding Edge

1.5 Prerequisites

This manual assumes that you know how to write C/C++ programs and that you have at least heard of scripting languages such as Tcl, Python, and Perl. A detailed knowledge of these
scripting languages is not required although some familiarity won't hurt. No prior experience with building C extensions to these languages is required---after all, this is what SWIG does
automatically. However, you should be reasonably familiar with the use of compilers, linkers, and makefiles since making scripting language extensions is somewhat more complicated than
writing a normal C program.

Over time SWIG releases have become significantly more capable in their C++ handling--especially support for advanced features like namespaces, overloaded operators, and templates.
Whenever possible, this manual tries to cover the technicalities of this interface. However, this isn't meant to be a tutorial on C++ programming. For many of the gory details, you will almost
certainly want to consult a good C++ reference. If you don't program in C++, you may just want to skip those parts of the manual.

1.6 Organization of this manual

The first few chapters of this manual describe SWIG in general and provide an overview of its capabilities. The remaining chapters are devoted to specific SWIG language modules and are
self contained. Thus, if you are using SWIG to build Python interfaces, you can probably skip to that chapter and find almost everything you need to know.

1.7 How to avoid reading the manual

1.1 Introduction

15

https://www.swig.org/legal.html
https://www.swig.org
https://www.swig.org/mail.html
https://www.swig.org/svn.html

SWIG-4.2 Documentation

If you hate reading manuals, glance at the "Introduction" which contains a few simple examples. These examples contain about 95% of everything you need to know to use SWIG. After that,
simply use the language-specific chapters as a reference. The SWIG distribution also comes with a large directory of examples that illustrate different topics.

1.8 Backwards compatibility

If you are a previous user of SWIG, don't expect SWIG to provide complete backwards compatibility. Although the developers strive to the utmost to keep backwards compatibility, this isn't
always possible as the primary goal over time is to make SWIG better---a process that would simply be impossible if the developers are constantly bogged down with backwards compatibility
issues. Potential incompatibilities are clearly marked in the detailed release notes.

If you need to work with different versions of SWIG and backwards compatibility is an issue, you can use the SWIG_VERSION preprocessor symbol which holds the version of SWIG being
executed. SWIG_VERSION is a hexadecimal integer such as 0x010311 (corresponding to SWIG-1.3.11). This can be used in an interface file to define different typemaps, take advantage of
different features etc:

#if SWIG_VERSION >= 0x010311
/* Use some fancy new feature */
#endif

Note: The version symbol is not defined in the generated SWIG wrapper file. The SWIG preprocessor has defined SWIG_VERSION since SWIG-1.3.11.
1.9 Release notes

The CHANGES.current, CHANGES and RELEASENOTES files shipped with SWIG in the top level directory contain, respectively, detailed release notes for the current version, detailed
release notes for previous releases and summary release notes from SWIG-1.3.22 onwards.

1.10 Credits

SWIG is an unfunded project that would not be possible without the contributions of many people working in their spare time. If you have benefitted from using SWIG, please consider Donating
to SWIG to keep development going. There have been a large varied number of people who have made contributions at all levels over time. Contributors are mentioned either in the
COPYRIGHT file or CHANGES files shipped with SWIG or in submitted bugs.

1.11 Bug reports

Although every attempt has been made to make SWIG bug-free, we are also trying to make feature improvements that may introduce bugs. To report a bug, either send mail to the SWIG
developer list at the swig-devel mailing list or report a bug at the SWIG bug tracker. In your report, be as specific as possible, including (if applicable), error messages, tracebacks (if a core
dump occurred), corresponding portions of the SWIG interface file used, and any important pieces of the SWIG generated wrapper code. We can only fix bugs if we know about them.

1.12 Installation

1.12.1 Windows installation

Please see the dedicated Windows chapter for instructions on installing SWIG on Windows and running the examples. The Windows distribution is called swigwin and includes a prebuilt SWIG
executable, swig.exe, included in the top level directory. Otherwise it is exactly the same as the main SWIG distribution. There is no need to download anything else.

1.12.2 Unix installation

These installation instructions are for using the distributed tarball, for example, swig-3.0.8.tar.gz. If you wish to build and install from source on Github, extra steps are required. Please
see the Bleeding Edge page on the SWIG website.

You must use GNU make to build and install SWIG.

PCRE2 needs to be installed on your system to build SWIG, in particular pcre2-config must be available. If you have PCRE2 headers and libraries but not pcre2-config itself or, alternatively,
wish to override the compiler or linker flags returned by pcre2-config, you may set PCRE2_LIBS and PCRE2_CFLAGS variables to be used instead. And if you don't have PCRE2 at all, the
configure script will provide instructions for obtaining it.

To build and install SWIG, simply type the following:

$./configure
$ make
$ make install

By default SWIG installs itself in /usr/local. If you need to install SWIG in a different location or in your home directory, use the --prefix option to . /configure. For example:

$./configure --prefix=/home/yourname/projects
$ make
$ make install

Note: the directory given to --prefix must be an absolute pathname. Do not use the ~ shell-escape to refer to your home directory. SWIG won't work properly if you do this.

The INSTALL file shipped in the top level directory details more about using configure. Also try

$./configure --help.

The configure script will attempt to locate various packages on your machine including Tcl, Perl5, Python and all the other target languages that SWIG supports. Don't panic if you get 'not
found' messages -- SWIG does not need these packages to compile or run. The configure script is actually looking for these packages so that you can try out the SWIG examples contained in
the 'Examples' directory without having to hack Makefiles. Note that the --without-xxx options, where xxx is a target language, have minimal effect. All they do is reduce the amount of
testing done with 'make check'. The SWIG executable and library files installed cannot currently be configured with a subset of target languages.

SWIG used to include a set of runtime libraries for some languages for working with multiple modules. These are no longer built during the installation stage. However, users can build them
just like any wrapper module as described in the Modules chapter. The CHANGES file shipped with SWIG in the top level directory also lists some examples which build the runtime library.

Note:

« If you checked the code out via Git, you will have to run . /autogen. sh before . /configure. In addition, a full build of SWIG requires a number of packages to be installed. Full
instructions at SWIG bleeding edge.

1.12.3 Macintosh OS X installation

SWIG is known to work on various flavors of OS X. Follow the Unix installation instructions above. However, as of this writing, there is still great deal of inconsistency with how shared libraries
are handled by various scripting languages on OS X.

Users of OS X should be aware that Darwin handles shared libraries and linking in a radically different way than most Unix systems. In order to test SWIG and run the examples, SWIG

1.8 Backwards compatibility

16

https://www.swig.org/donate.html
https://www.swig.org/mail.html
https://www.swig.org/bugs.html
https://swig.org/svn.html
https://www.gnu.org/software/make/
https://www.pcre.org/
https://www.swig.org/svn.html

SWIG-4.2 Documentation

configures itself to use flat namespaces and to allow undefined symbols (-flat_namespace -undefined suppress). This mostly closely follows the Unix model and makes it more likely
that the SWIG examples will work with whatever installation of software you might have. However, this is generally not the recommended technique for building larger extension modules.
Instead, you should utilize Darwin's two-level namespaces. Some details about this can be found here Understanding Two-Level Namespaces.

Needless to say, you might have to experiment a bit to get things working at first.
1.12.4 Testing

If you want to test SWIG after building it, a check can be performed on Unix operating systems. Type the following:

$ make -k check

This step can be performed either before or after installation. The check requires at least one of the target languages to be installed. If it fails, it may mean that you have an uninstalled
language module or that the file 'Examples/Makefile' has been incorrectly configured. It may also fail due to compiler issues such as a broken C++ compiler. Even if the check fails, there is a
pretty good chance SWIG still works correctly --- you will just have to mess around with one of the examples and some makefiles to get it to work. Some tests may also fail due to missing
dependency packages, eg PCRE or Boost, but this will require careful analysis of the configure output done during configuration.

The test suite executed by the check is designed to stress-test many parts of the implementation including obscure corner cases. If some of these tests fail or generate warning messages,
there is no reason for alarm --- the test may be related to some new SWIG feature or a difficult bug that we're trying to resolve. Chances are that SWIG will work just fine for you. Note that if
you have more than one CPU/core, then you can use parallel make to speed up the check as it does take quite some time to run, for example:

$ make -j2 -k check

Also, SWIG's support for C++ is sufficiently advanced that certain tests may fail on older C++ compilers (for instance if your compiler does not support member templates). These errors are
harmless if you don't intend to use these features in your own programs.

Note: The test-suite currently contains over 600 tests. If you have many different target languages installed and a slow machine, it might take more than an hour to run the test-suite.
1.12.5 Examples
The Examples directory contains a variety of examples of using SWIG and it has some browsable documentation. Simply point your browser to the file "Example/index.html".

The Examples directory also includes Visual C++ project 6 (.dsp) files for building some of the examples on Windows. Later versions of Visual Studio will convert these old style project files
into a current solution file.

2 Introduction

What is SWIG?
Why use SWIG?
Target languages
o Supported status
o Experimental status
A SWIG example
o SWIG interface file
o The swig command
o Building a Perl5 module
o Building a Python module
o Shortcuts
Supported C/C++ language features
Non-intrusive interface building
Incorporating SWIG into a build system
Hands off code generation
SWIG and freedom

2.1 What is SWIG?

SWIG is a software development tool that simplifies the task of interfacing different languages to C and C++ programs. In a nutshell, SWIG is a compiler that takes C/C++ declarations and
creates the wrappers needed to access those declarations from other languages including Perl, Python, Tcl, Ruby, Guile, and Java. SWIG normally requires no modifications to existing code
and can often be used to build a usable interface in only a few minutes. Possible applications of SWIG include:

Building interpreted interfaces to existing C programs.

Rapid prototyping and application development.

Interactive debugging.

Reengineering or refactoring of legacy software into scripting language components.
Making a graphical user interface (using Tk for example).

Testing of C libraries and programs (using scripts).

Building high performance C modules for scripting languages.

Making C programming more enjoyable (or tolerable depending on your point of view).
Impressing your friends.

Obtaining vast sums of research funding (although obviously not applicable to the author).

SWIG was originally designed to make it extremely easy for scientists and engineers to build extensible scientific software without having to get a degree in software engineering. Because of
this, the use of SWIG tends to be somewhat informal and ad-hoc (e.g., SWIG does not require users to provide formal interface specifications as you would find in a dedicated IDL compiler).
Although this style of development isn't appropriate for every project, it is particularly well suited to software development in the small; especially the research and development work that is
commonly found in scientific and engineering projects. However, nowadays SWIG is known to be used in many large open source and commercial projects.

2.2 Why use SWIG?

As stated in the previous section, the primary purpose of SWIG is to simplify the task of integrating C/C++ with other programming languages. However, why would anyone want to do that? To
answer that question, it is useful to list a few strengths of C/C++ programming:

« Excellent support for writing programming libraries.

« High performance (number crunching, data processing, graphics, etc.).
« Systems programming and systems integration.

« Large user community and software base.

Next, let's list a few problems with C/C++ programming

« Writing a user interface is rather painful (i.e., consider programming with MFC, X11, GTK, or any number of other libraries).
« Testing is time consuming (the compile/debug cycle).

« Not easy to reconfigure or customize without recompilation.

« Modularization can be tricky.

« Security concerns (buffer overflows for instance).

2.1 What is SWIG? 17

https://developer.apple.com/library/mac/documentation/Porting/Conceptual/PortingUnix/compiling/compiling.html#//apple_ref/doc/uid/TP40002850-BCIHJBBF

SWIG-4.2 Documentation

To address these limitations, many programmers have arrived at the conclusion that it is much easier to use different programming languages for different tasks. For instance, writing a
graphical user interface may be significantly easier in a scripting language like Python or Tcl (consider the reasons why millions of programmers have used languages like Visual Basic if you
need more proof). An interactive interpreter might also serve as a useful debugging and testing tool. Other languages like Java might greatly simplify the task of writing distributed computing
software. The key point is that different programming languages offer different strengths and weaknesses. Moreover, it is extremely unlikely that any programming is ever going to be perfect.
Therefore, by combining languages together, you can utilize the best features of each language and greatly simplify certain aspects of software development.

From the standpoint of C/C++, a lot of people use SWIG because they want to break out of the traditional monolithic C programming model which usually results in programs that resemble
this:

« A collection of functions and variables that do something useful.
« Amain() program that starts everything.
« A horrible collection of hacks that form some kind of user interface (but which no-one really wants to touch).

Instead of going down that route, incorporating C/C++ into a higher level language often results in a more modular design, less code, better flexibility, and increased programmer productivity.
SWIG tries to make the problem of C/C++ integration as painless as possible. This allows you to focus on the underlying C program and using the high-level language interface, but not the

tedious and complex chore of making the two languages talk to each other. At the same time, SWIG recognizes that all applications are different. Therefore, it provides a wide variety of
customization features that let you change almost every aspect of the language bindings. This is the main reason why SWIG has such a large user manual ;-).

2.3 Target languages

SWIG in essence is a tool to generate code for making C/C++ code available to various other programming languages. These higher level programming languages are the target languages for
the SWIG code generator and C or C++ are the input languages. A single target language must be specified when SWIG is run. This results in generating code for C/C++ and the specified
target language to interface with each other. SWIG can be invoked multiple times, but with a different target language specified on each invocation. This ability to interface C/C++ to many
different target languages is one of SWIG's core strengths and features.

SWIG is very broadly composed of two components. A core component creates a parse tree from the input ISO C/C++ and SWIG directives (extensions to the C/C++ standards). The parse
tree is then passed to a second component, one of the target language modules for generating code specific to a higher level language. SWIG supports many different target languages.

These target languages are given a status of either Supported or Experimental. This status is provided to indicate the level of maturity to expect when using a particular target language as not
all target languages are fully developed.

The second part of the SWIG documentation contains a chapter for each target level language. The target language chapters are under one of two sections indicating the status (Supported or
Experimental) for that language.

2.3.1 Supported status
A target language is given the 'Supported' status when
« Itis in a mature, well functioning state.
« It has its own comprehensive chapter in the documentation.
« It passes all of the main SWIG test-suite and has a range of working examples.
« It supports the vast majority of SWIG features.
« It provides strong backwards compatibility between releases.

The above is a short summary and further details are outlined in the Supported status section in the Extending chapter. The good news is that all the well-known and most popular languages
have this status.

2.3.2 Experimental status

A target language is given the 'Experimental’ status when
« ltis of sub-standard quality, failing to meet the above 'Supported' status.
« Itis somewhere between the mid to mature stage of development.
« It does not guarantee any backwards compatibility between releases.
« ltis in need of help to finish development.
Anyone using an experimental target language is strongly urged to assist with development of the target language module if they wish to use it.

SWIG displays a warning when an experimental target language is used in order to set expectations and emphasize the experimental status of the target language. The usual warning
suppression techniques can be used if required.

The above is a short summary and further details are outlined in the Experimental status section in the Extending chapter.
2.4 A SWIG example

The best way to illustrate SWIG is with a simple example. Consider the following C code:

/* File : example.c */
double My variable = 3.0;

/* Compute factorial of n */
int fact(int n) {
if (n <= 1)
return 1;
else
return n*fact(n-1);

}

/* Compute n mod m */
int my mod(int n, int m) {
return(n % m);

}

Suppose that you wanted to access these functions and the global variable My_variable from Tcl. You start by making a SWIG interface file as shown below (by convention, these files carry
a .i suffix) :

2.4.1 SWIG interface file

/* File : example.i */

gmodule example

3{

/* Put headers and other declarations here */
extern double My variable;

extern int fact(int);
extern int my_mod(int n, int m);
%}

extern double My_variable;

2.3 Target languages

SWIG-4.2 Documentation

extern int fact(int);
extern int my_mod(int n, int m);

The interface file contains ISO C function prototypes and variable declarations. The $module directive defines the name of the module that will be created by SWIG. The ${ %} block provides
a location for inserting additional code, such as C header files or additional C declarations, into the generated C wrapper code.

2.4.2 The swig command

SWIG is invoked using the swig command. We can use this to build a Tcl module (under Linux) as follows :

unix > swig -tcl example.i

unix > gcc -c -fpic example.c example wrap.c -I/usr/local/include
unix > gcc -shared example.o example wrap.o -o example.so
unix > tclsh

% load ./example.so

% fact 4

24

% my _mod 23 7

2

% expr $My variable + 4.5

7.5

%

The swig command produced a new file calledexample_wrap.c that should be compiled along with theexample. c file. Most operating systems and scripting languages now support
dynamic loading of modules. In our example, our Tcl module has been compiled into a shared library that can be loaded into Tcl. When loaded, Tcl can now access the functions and variables
declared in the SWIG interface. A look at the file example_wrap.c reveals a hideous mess. However, you almost never need to worry about it.

2.4.3 Building a Perl5 module

Now, let's turn these functions into a Perl5 module. Without making any changes type the following (shown for Solaris):

unix > swig -perl5 example.i

unix > gec -c example.c example wrap.c \
-I/usr/local/lib/perl5/sun4-solaris/5.003/CORE

unix > 1d -G example.o example wrap.o -o example.so # This is for Solaris

unix > perl5.003

use example;

print example::fact(4), "\n";

print example::my mod(23, 7), "\n";

print $example::My variable + 4.5, "\n";

<ctrl-d>

24

2

7.5

unix >

2.4.4 Building a Python module

Finally, let's build a module for Python (shown for Irix).

unix > swig -python example.i

unix > gec -c -fpic example.c example wrap.c -I/usr/local/include/python2.0
unix > gcc -shared example.o example wrap.o -o _example.so

unix > python

Python 2.0 (#6, Feb 21 2001, 13:29:45)

[GCC egcs-2.91.66 19990314/Linux (egcs-1.1.2 release)] on linux2
Type "copyright", "credits" or "license" for more information.
>>> import example

>>> example.fact(4)

24

>>> example.my mod (23, 7)

2

>>> example.cvar.My_variable + 4.5

7.5

2.4.5 Shortcuts

To the truly lazy programmer, one may wonder why we needed the extra interface file at all. As it turns out, you can often do without it. For example, you could also build a Perl5 module by just
running SWIG on the C header file and specifying a module name as follows

unix > swig -perl5 -module example example.h

unix > gcc -c example.c example_wrap.c \
-I/usr/local/lib/perl5/sun4-solaris/5.003/CORE

unix > 1ld -G example.o example wrap.o -o example.so

unix > perl5.003

use example;

print example::fact(4), "\n";

print example::my mod(23, 7), "\n";

print $example::My variable + 4.5, "\n";

<ctrl-d>

24

2

7.5

2.5 Supported C/C++ language features

A primary goal of the SWIG project is to make the language binding process extremely easy. Although a few simple examples have been shown, SWIG is quite capable in supporting most of
C++. Some of the major features include:

o Full C99 preprocessing.

« AllISO C and C++ datatypes.
« Functions, variables, and constants.

2.5 Supported C/C++ language features

SWIG-4.2 Documentation

Classes.

Single and multiple inheritance.

Overloaded functions and methods.

Overloaded operators.

C++ templates (including member templates, specialization, and partial specialization).
Namespaces.

Variable length arguments.

C++ smart pointers.

Most of C++11 is also supported. Details are in the C++11 chapter. C++14 support is covered in theC++14 chapter. C++17 support is covered in theC++17 chapter. C++20 support is covered
in the C++20 chapter.

It is important to stress that SWIG is not a simplistic C++ lexing tool like several apparently similar wrapper generation tools. SWIG not only parses C++, it implements the full C++ type system
and it is able to understand C++ semantics. SWIG generates its wrappers with full knowledge of this information. As a result, you will find SWIG to be just as capable of dealing with nasty
corner cases as it is in wrapping simple C++ code. In fact, SWIG is able to handle C++ code that stresses the very limits of many C++ compilers.

2.6 Non-intrusive interface building

When used as intended, SWIG requires minimal (if any) modification to existing C or C++ code. This makes SWIG extremely easy to use with existing packages and promotes software reuse
and modularity. By making the C/C++ code independent of the high level interface, you can change the interface and reuse the code in other applications. It is also possible to support different
types of interfaces depending on the application.

2.7 Incorporating SWIG into a build system

SWIG is a command line tool and as such can be incorporated into any build system that supports invoking external tools/compilers. SWIG is most commonly invoked from within a Makefile,
but is also known to be invoked from popular IDEs such as Microsoft Visual Studio.

If you are using the GNU Autotools (_Autoconf/ Automake / Libtool) to configure SWIG use in your project, the SWIG Autoconf macros can be used. The primary macro is ax_pkg_swig, see
http://www.gnu.org/software/autoconf-archive/ax_pkg_swig.html#ax_pkg_swig . The ax_python_devel macro is also helpful for generating Python extensions. See the Autoconf Archive for
further information on this and other Autoconf macros.

There is growing support for SWIG in some build tools, for example CMake is a cross-platform, open-source build manager with built in support for SWIG. CMake can detect the SWIG
executable and many of the target language libraries for linking against. CMake knows how to build shared libraries and loadable modules on many different operating systems. This allows
easy cross platform SWIG development. It can also generate the custom commands necessary for driving SWIG from IDEs and makefiles. All of this can be done from a single cross platform
input file. The following example is a CMake input file for creating a Python wrapper for the SWIG interface file, example.i:

This is a CMake example for Python

FIND_PACKAGE(SWIG REQUIRED)
INCLUDE (${SWIG_USE_FILE})

FIND_PACKAGE (PythonLibs)
INCLUDE DIRECTORIES (${PYTHON_ INCLUDE_ PATH})

INCLUDE_DIRECTORIES (${CMAKE_CURRENT_SOURCE_DIR})

SET (CMAKE_SWIG_FLAGS "")

SET_SOURCE_FILES_ PROPERTIES(example.i PROPERTIES CPLUSPLUS ON)
SET_SOURCE_FILES PROPERTIES(example.i PROPERTIES SWIG_FLAGS "-includeall")

SWIG_ADD_MODULE(example python example.i example.cxx)
SWIG_LINK_LIBRARIES(example ${PYTHON_ LIBRARIES})

The above example will generate native build files such as makefiles, nmake files and Visual Studio projects which will invoke SWIG and compile the generated C++ files into _example.so
(UNIX) or _example.pyd (Windows). For other target languages on Windows a dll, instead of a .pyd file, is usually generated.

2.8 Hands off code generation

SWIG is designed to produce working code that needs no hand-modification (in fact, if you look at the output, you probably won't want to modify it). You should think of your target language
interface being defined entirely by the input to SWIG, not the resulting output file. While this approach may limit flexibility for hard-core hackers, it allows others to forget about the low-level
implementation details.

2.9 SWIG and freedom

No, this isn't a special section on the sorry state of world politics. However, it may be useful to know that SWIG was written with a certain "philosophy" about programming---namely that
programmers are smart and that tools should just stay out of their way. Because of that, you will find that SWIG is extremely permissive in what it lets you get away with. In fact, you can use
SWIG to go well beyond "shooting yourself in the foot" if dangerous programming is your goal. On the other hand, this kind of freedom may be exactly what is needed to work with complicated
and unusual C/C++ applications.

Ironically, the freedom that SWIG provides is countered by an extremely conservative approach to code generation. At its core, SWIG tries to distill even the most advanced C++ code down to
a small well-defined set of interface building techniques based on ISO C programming. Because of this, you will find that SWIG interfaces can be easily compiled by virtually every C/C++
compiler and that they can be used on any platform. Again, this is an important part of staying out of the programmer's way----the last thing any developer wants to do is to spend their time
debugging the output of a tool that relies on non-portable or unreliable programming features. Dependencies are often a source of incompatibilities and problems and so additional third party
libraries are not used in the generated code. SWIG will also generally avoid generating code that introduces a dependency on the C++ Standard Template Library (STL). SWIG will generate
code that depends on the C libraries though.

3 Getting started on Windows

« Installation on Windows
o Windows Executable
« SWIG Windows Examples
o Instructions for using the Examples with Visual Studio
- C#
Java
erl
th
TCL

o

F
©
=

[0

= Ruby
o Instructions for using the Examples with other compilers
« Building swig.exe on Windows
o Building swig.exe using CMake

2.6 Non-intrusive interface building

https://www.gnu.org/software/autoconf/
https://www.gnu.org/software/automake/
https://www.gnu.org/software/libtool/
https://www.gnu.org/software/autoconf-archive/ax_pkg_swig.html#ax_pkg_swig
https://www.gnu.org/software/autoconf-archive/
https://cmake.org

SWIG-4.2 Documentation

o Building swig.exe using MSYS2
o Building swig.exe using MinGW and MSYS
o Building swig.exe using Cygwin
= Running the examples on Windows using Cygwin
« Microsoft extensions and other Windows quirks

This chapter describes SWIG usage on Microsoft Windows. Installing SWIG and running the examples is covered as well as building the SWIG executable. Usage within the Unix like
environments MinGW and Cygwin is also detailed.

3.1 Installation on Windows

SWIG does not come with the usual Windows type installation program, however it is quite easy to get started. The main steps are:

« Download the swigwin zip package from theSWIG website and unzip into a directory. This is all that needs downloading for the Windows platform.
« Set environment variables as described in theSWIG Windows Examples section in order to run examples using Visual C++.

3.1.1 Windows Executable

The swigwin distribution contains the SWIG Windows 32-bit executable, swig.exe, which will run on both 32-bit and 64-bit versions of Windows. If you want to build your own swig.exe have a
look at Building swig.exe on Windows.

3.2 SWIG Windows Examples

Microsoft Visual C++ is the most commonly used compiler for compiling and linking SWIG's output on Windows. The Examples directory has a few Visual C++ project files (.dsp files). These
were produced by Visual C++ 6. Newer versions of Visual Studio are able to open and convert these project files. Each C# example comes with a Visual Studio 2005 solution and associated
project files instead of Visual C++ 6 project files. The project files have been set up to execute SWIG in a custom build rule for the SWIG interface (.i) file. Alternatively run the examples usin
Cygwin. examp lo}

More information on each of the examples is available with the examples distributed with SWIG (Examples/index.html).

3.2.1 Instructions for using the Examples with Visual Studio
Ensure the SWIG executable is as supplied in the SWIG root directory in order for the examples to work. Most languages require some environment variables to be set before running Visual
C++. Note that Visual C++ must be re-started to pick up any changes in environment variables. Open up an example .dsp file, Visual C++ will prompt you to upgrade the project and convert it
into an MSBuild project (.vexproj file) and Solution (.sIn file). Note that older versions of Visual C++ will simply create a workspace for you (.dsw file). Ensure the Release build is selected then
do a Rebuild Solution from the Build menu. The required environment variables are displayed with their current values during the build.
The list of required environment variables for each module language is also listed below. They are usually set from the Control Panel and System properties, but this depends on which flavour

of Windows you are running. If you don't want to use environment variables then change all occurrences of the environment variables in the .dsp files with hard coded values. If you are
interested in how the project files are set up there is explanatory information in some of the language module's documentation.

3.21.1C#

The C# examples do not require any environment variables to be set as a C# project file is included. Just open up the .sln solution file in Visual Studio 2005 or later, select Release Build, and
do a Rebuild Solution from the Build menu. The accompanying C# and C++ project files are automatically used by the solution file.

3.2.1.2 Java

JAVA_INCLUDE : Set this to the directory containing jni.h
JAVA_BIN : Set this to the bin directory containing javac.exe

Example using JDK1.3:
JAVA_INCLUDE: D:\jdkl.3\include
JAVA_BIN: D:\jdkl.3\bin

3.2.1.3 Perl

PERL5_INCLUDE : Set this to the directory containing perl.h
PERL5_LIB : Set this to the Perl library including path for linking

Example using nsPerl 5.004_04:

PERL5_INCLUDE: D:\nsPerl5.004_04\1ib\CORE
PERL5_LIB: D:\nsPerl5.004_04\1ib\CORE\perl.lib

3.2.1.4 Python

PYTHON_INCLUDE : Set this to the directory that contains Python.h
PYTHON_LIB : Set this to the Python library including path for linking

Example using Python 2.1.1:
PYTHON_INCLUDE: D:\python2l\include
PYTHON_LIB: D:\python21\libs\python2l.lib

3.2.1.5TCL

TCL_INCLUDE : Set this to the directory containing tcl.h
TCL_LIB : Set this to the TCL library including path for linking

Example using ActiveTcl 8.3.3.3
TCL_INCLUDE: D:\tcl\include
TCL_LIB: D:\tcl\lib\tcl83.1lib

3.216R

R_INCLUDE : Set this to the directory containing R.h
R_LIB: Set this to the R library (Rdll.lib) including path for linking. The library needs to be built as described in the R README.packages file (the pexports.exe approach is the easiest).

Example using R 2.5.1:

R_INCLUDE: C:\Program Files\R\R-2.5.1\include

R_LIB: C:\Program Files\R\R-2.5.1\bin\Rd1ll.lib
3.2.1.7 Ruby

RUBY_INCLUDE : Set this to the directory containing ruby.h
RUBY_LIB : Set this to the ruby library including path for linking

Example using Ruby 1.6.4:

3.1 Installation on Windows 21

https://www.swig.org

SWIG-4.2 Documentation

RUBY_INCLUDE: D:\ruby\lib\ruby\1l.6\i586-mswin32
RUBY_LIB: D:\ruby\lib\mswin32-rubyl6.lib

3.2.2 Instructions for using the Examples with other compilers

If you

do not have access to Visual C++ you will have to set up project files / Makefiles for your chosen compiler. There is a section in each of the language modules detailing what needs

setting up using Visual C++ which may be of some guidance. Alternatively you may want to use Cygwin as described in the following section.

3.3Bu

ilding swig.exe on Windows

The SWIG distribution provides a pre-built swig.exe and so it is not necessary for users to build the SWIG executable. However, this section is provided for those that want to modify the SWIG
source code in a Windows environment. Normally this is not needed, so most people will want to ignore this section.

There

are various ways to build the SWIG executable including CMake which is able to generate project files for building with Visual Studio. SWIG can also be compiled and run using MSYS2,

Cyawin or MinGW, all of which provide a Unix like front end to Windows and comes free with the gcc C/C++ compiler.

3.3.1 Building swig.exe using CMake

SWIG can be built using CMake and Visual Studio rather than autotools. As with the other approaches to building SWIG the dependencies need to be installed. The steps below are one of a

numb

er of ways of installing the dependencies without requiring Cygwin or MinGW. For fully working build steps always check the Continuous Integration (Cl) setups currently detailed in the

b Actions YAML file.

GitHu
1.

Install Nuget from https:/www.nuget.org/downloads (v6.0.0 is used in this example, and installed to C: \Tools). Nuget is the package manager for .NET, but allows us to easily install
CMake and other dependencies required by SWIG.

2.

ES

o

o

Install CMake-win64 Nuget package using the following command:

C:\Tools\nuget install CMake-win64 -Version 3.15.5 -OutputDirectory C:\Tools\CMake
Using PowerShell the equivalent syntax is:

& "C:\Tools\nuget" install CMake-win64 -Version 3.15.5 -OutputDirectory C:\Tools\CMake

Alternatively you can download CMake from https:/cmake.org/download/.

. Install the Bison Nuget package using the following command:

C:\Tools\nuget install Bison -Version 3.7.4 -OutputDirectory C:\Tools\bison

Alternatively download Bison from https:/sourceforge.net/projects/winflexbison/files/ (Bison 3.7.4 is used in this example) and save to a folder e.g. C: \Tools\Bison

. Install the PCRE2 Nuget package using the following command:

C:\Tools\nuget install PCRE2 -Version 10.39 -OutputDirectory C:\Tools\pcre2

Note this is a x64 build, if this is not suitable PCRE2 can be built from source using https:/github.com/PhilipHazel/pcre2/. Alternatively, set WITH_PCRE=OFF to disable PCRE2 support if
you are sure you do not require it.

. We will also need the SWIG source code. Either download a zipped archive from GitHub, or if git is installed clone the latest codebase using:

git clone https://github.com/swig/swig.git

In this example we are assuming the source code is available at C: \swig

. Now we have all the required dependencies we can build SWIG using PowerShell and the commands below. We are assuming Visual Studio 2019 is installed. For other versions of

Visual Studio change "Visual Studio 16 2019 -A x64" to the relevant Visual Studio Generator and architecture. We add the required build tools to the system PATH, and then
build a Release version of SWIG. If all runs successfully a new swig.exe should be generated in the C: /swig/install2/bin folder.

cd C:\swig

$env:PATH="C:\Tools\CMake\CMake-win64.3.15.5\bin;C:\Tools\bison\Bison.3.7.4\bin;" + $env:PATH
$PCRE_ROOT="C:\Tools\pcre2\PCRE2.10.39.0"
$PCRE_PLATFORM="X64"

cmake -G "Visual Studio 16 2019" -A "x64" °
-DCMAKE_INSTALL_PREFIX="C:/swig/install2"
-DCMAKE_C_FLAGS="/DPCRE2_STATIC" °

cmake --build build --config Release
cmake --install build --config Release

-DCMAKE_CXX FLAGS="/DPCRE2_STATIC" °
-DPCRE2_INCLUDE DIR="$PCRE_ROOT/include" °
-DPCRE2_LIBRARY="$PCRE_ROOT/lib/pcre2-8-static.lib" °
-S . -B build

to test the exe built correctly
cd install2/bin

./swig.exe -version

./swig.exe -help

In ad

dition to Release builds you can create a Debug build using:

cmake --build build --config Debug

A Visual Studio solution file should be generated named swig.sIn. This can be opened and debugged by running the swig project and setting Properties > Debugging > Command
Arguments. For example to debug one of the test-suite .i files included with the SWIG source use the following:

-python -c++ -o C:\Temp\doxygen parsing.cpp C:\swig\Examples\test-suite\doxygen parsing.i

3.3.2

Building swig.exe using MSYS2

Download and install MSYS2 from www.msys2.org (tested with version msys2-x86_64-20201109). Launch the MSYS2 shell.

Install the packages needed to build swig:

pacman -S git autoconf automake bison gcc make pcre2-devel

Clon

e the repository to /usr/src/:

3.3 Building swig.exe on Windows

22

https://cmake.org/
https://www.msys2.org/
https://www.cygwin.com
https://osdn.net/projects/mingw/
https://cmake.org/
https://github.com/swig/swig/tree/master/.github/workflows/nuget.yml
https://www.nuget.org/downloads
https://cmake.org/
https://www.nuget.org/packages/CMake-win64/
https://cmake.org/download/
https://www.nuget.org/packages/bison/
https://sourceforge.net/projects/winflexbison/files/
https://www.nuget.org/packages/pcre2/
https://github.com/PhilipHazel/pcre2/
https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html#visual-studio-generators
https://www.msys2.org/

SWIG-4.2 Documentation

mkdir /usr/src/
cd /usr/src/
git clone https://github.com/swig/swig.git

Configure and build:

cd /usr/src/swig
./autogen.sh
./configure

make

Finally you may also want to install SWIG:

make install

3.3.3 Building swig.exe using MinGW and MSYS
Warning: These instructions were added in 2006 and have barely changed since so are unlikely to work exactly as written.
The short abbreviated instructions follow...

« Install MinGW and MSYS from the MinGW site. This provides a Unix environment on Windows.
« Follow the usual Unix instructions in the README file in the SWIG root directory to build swig.exe from the MinGW command prompt.

The step by step instructions to download and install MinGW and MSYS, then download and build the latest version of SWIG from Github follow... Note that the instructions for obtaining SWIG
from Github are also online at SWIG Bleeding Edge.

Pitfall note: Execute the steps in the order shown and don't use spaces in path names. In fact it is best to use the default installation directories.

1. Download the following packages from the MinGW download page. Note that at the time of writing, the majority of these are in the Current release list and some are in the Snapshot or
Previous release list.
MinGW-3.1.0-1.exe
MSYS-1.0.11-2004.04.30-1.exe
msysDTK-1.0.1.exe
bison-2.0-MSYS.tar.gz
msys-autoconf-2.59.tar.bz2
o msys-automake-1.8.2.tar.bz2
. Install MinGW-3.1.0-1.exe (C:\MinGW is default location.)
. Install MSYS-1.0.11-2004.04.30-1.exe. Make sure you install it on the same windows drive letter as MinGW (C:\msys\1.0 is default). In the post install script,
o Answer y to the "do you wish to continue with the post install?"
o Answer y to the "do you have MinGW installed?"
o Type in the folder in which you installed MinGW (C:/MinGW is default)
. Install msysDTK-1.0.1.exe to the same folder that you installed MSYS (C:\msys\1.0 is default).
. Copy the following to the MSYS install folder (C:\msys\1.0 is default):
o msys-automake-1.8.2.tar.bz2
o msys-autoconf-2.59.tar.bz2
o bison-2.0-MSYS.tar.gz
6. Start the MSYS command prompt and execute:

°

w N
o 0 o o

(S0

cd /

tar -jxf msys-automake-1.8.2.tar.bz2
tar -jxf msys-autoconf-2.59.tar.bz2
tar -zxf bison-2.0-MSYS.tar.gz

7. The very latest development version of SWIG is available from SWIG on Github and can be downloaded as a zip file or if you have Git installed, via Git. Either download the latest Zip file
snapshot and unzip and rename the top level folder to /usr/src/swig. Otherwise if using Git, type in the following:

mkdir /usr/src
cd /usr/src
git clone https://github.com/swig/swig.git

Pitfall note: If you want to place SWIG in a different folder to the proposed /usr/src/swig, do not use MSYS emulated windows drive letters, because the autotools will fail miserably on
those.
8. The PCREZ2 third party library needs to be built next. Download the latest PCRE2 source tarball, such as pcre2-10.39.tar.bz2, from www.pcre.org and place in the /usr/src/swig
directory. Build PCRE2 as a static library using the Tools/pcre-build.sh script as follows:

cd /usr/src/swig
Tools/pcre-build.sh

9. You are now ready to build SWIG. Execute the following commands to build swig.exe:

cd /usr/src/swig
./autogen.sh
./configure
make

3.3.4 Building swig.exe using Cygwin
Note that SWIG can also be built using Cygwin. However, SWIG will then require the Cygwin DLL when executing. Follow the Unix instructions in the README file in the SWIG root directory.
Note that the Cygwin environment will also allow one to regenerate the autotool generated files which are supplied with the release distribution. These files are generated using the
autogen. sh script and will only need regenerating in circumstances such as changing the build system.

3.3.4.1 Running the examples on Windows using Cygwin

The examples and test-suite work as successfully on Cygwin as on any other Unix operating system. The modules which are known to work are Python, Tcl, Perl, Ruby, Java and C#. Follow
the Unix instructions in the README file in the SWIG root directory to build the examples.

3.4 Microsoft extensions and other Windows quirks

A common problem when using SWIG on Windows are the Microsoft function calling conventions which are not in the C++ standard. SWIG parses ISO C/C++ so cannot deal with proprietary
conventions such as __declspec(dllimport), __ stdcall etc. There is a Windows interface file, windows. i, to deal with these calling conventions though. The file also contains
typemaps for handling commonly used Windows specific types such as __int64, BOOL , DWORD etc. Include it like you would any other interface file, for example:

%include <windows.i>

3.4 Microsoft extensions and other Windows quirks

23

https://osdn.net/projects/mingw/
https://www.swig.org/svn.html
https://osdn.net/projects/mingw/releases/
https://github.com/swig/swig
https://github.com/swig/swig/archive/master.zip
https://www.pcre.org

SWIG-4.2 Documentation

__declspec(dllexport) ULONG _ stdcall foo(DWORD, _ int32);

Note that if you follow Microsoft's recommendation of wrapping the__declspec calls in a preprocessor definition, you will need to make sure that the definition is included by SWIG as well, by
either defining it manually or via a header. For example, if you have specified the preprocessor definition in a header named export_1lib.h and include other headers which depend on it, you
should use the $include directive to include the definition explicitly. For example, if you had a header file, bar . h, which depended on export_1lib.h, your SWIG definition file might look
like:

// bar.i

gmodule bar

%include <windows.i>
%$include "export_lib.h"
%include "bar.h"

where export_lib.h may contain:

// export_lib.h
#define BAR API _ declspec(dllexport)

and bar.h may look like:

// bar.h
#include "export_ lib.h"
BAR_API void bar_function(int, double);

Using the preprocessor to remove BAR_API is a popular simpler solution:

// bar.i
gmodule bar
#define BAR_API
%include "bar.h"

4 Scripting Languages

« The two language view of the world
« How does a scripting language talk to C?
o Wrapper functions
o Variable linking
o Constants
o Structures and classes
o Proxy classes
« Building scripting language extensions
o Shared libraries and dynamic loading
o Linking with shared libraries
o Static linking

This chapter provides a brief overview of scripting language extension programming and the mechanisms by which scripting language interpreters access C and C++ code.

4.1 The two language view of the world

When a scripting language is used to control a C program, the resulting system tends to look as follows:

| Scripting Language
2

Collection of C/C++ functions

In this programming model, the scripting language interpreter is used for high level control whereas the underlying functionality of the C/C++ program is accessed through special scripting
language "commands." If you have ever tried to write your own simple command interpreter, you might view the scripting language approach to be a highly advanced implementation of that.
Likewise, If you have ever used a package such as MATLAB or IDL, it is a very similar model--the interpreter executes user commands and scripts. However, most of the underlying
functionality is written in a low-level language like C or Fortran.

The two-language model of computing is extremely powerful because it exploits the strengths of each language. C/C++ can be used for maximal performance and complicated systems
programming tasks. Scripting languages can be used for rapid prototyping, interactive debugging, scripting, and access to high-level data structures such associative arrays.

4.2 How does a scripting language talk to C?

Scripting languages are built around a parser that knows how to execute commands and scripts. Within this parser, there is a mechanism for executing commands and accessing variables.
Normally, this is used to implement the builtin features of the language. However, by extending the interpreter, it is usually possible to add new commands and variables. To do this, most
languages define a special API for adding new commands. Furthermore, a special foreign function interface defines how these new commands are supposed to hook into the interpreter.

Typically, when you add a new command to a scripting interpreter you need to do two things; first you need to write a special "wrapper" function that serves as the glue between the interpreter
and the underlying C function. Then you need to give the interpreter information about the wrapper by providing details about the name of the function, arguments, and so forth. The next few
sections illustrate the process.

4.2.1 Wrapper functions

Suppose you have an ordinary C function like this :

int fact(int n) {

if (n <= 1)
return 1;
else

return n*fact(n-1);

4.1 The two language view of the world 24

SWIG-4.2 Documentation

In order to access this function from a scripting language, it is necessary to write a special "wrapper" function that serves as the glue between the scripting language and the underlying C
function. A wrapper function must do three things :

« Gather function arguments and make sure they are valid.
« Call the C function.
« Convert the return value into a form recognized by the scripting language.

As an example, the Tcl wrapper function for the fact () function above example might look like the following :

int wrap_fact(ClientData clientData, Tcl_Interp *interp, int argc, char *argv[]) {
int result;
int arg0;
if (argc != 2) {
interp->result = "wrong # args";
return TCL_ERROR;
}
arg0 = atoi(argv[l]);
result = fact(arg0);
sprintf(interp->result, "%d", result);
return TCL_OK;

Once you have created a wrapper function, the final step is to tell the scripting language about the new function. This is usually done in an initialization function called by the language when
the module is loaded. For example, adding the above function to the Tcl interpreter requires code like the following :

int Wrap_Init(Tcl_Interp *interp) {
Tcl_CreateCommand(interp, "fact", wrap fact, (ClientData) NULL,
(Tcl_CmdDeleteProc *) NULL);
return TCL_OK;
}

When executed, Tcl will now have a new command called "fact " that you can use like any other Tcl command.

Although the process of adding a new function to Tcl has been illustrated, the procedure is almost identical for Perl and Python. Both require special wrappers to be written and both need
additional initialization code. Only the specific details are different.

4.2.2 Variable linking

Variable linking refers to the problem of mapping a C/C++ global variable to a variable in the scripting language interpreter. For example, suppose you had the following variable:

double Foo = 3.5;

It might be nice to access it from a script as follows (shown for Perl):

o * 2.3; # Evaluation

$a = $Fo
= $a + 2.0; # Assignment

$Foo

To provide such access, variables are commonly manipulated using a pair of get/set functions. For example, whenever the value of a variable is read, a "get" function is invoked. Similarly,
whenever the value of a variable is changed, a "set" function is called.

In many languages, calls to the get/set functions can be attached to evaluation and assignment operators. Therefore, evaluating a variable such as $Foo might implicitly call the get function.
Similarly, typing $Foo = 4 would call the underlying set function to change the value.

4.2.3 Constants

In many cases, a C program or library may define a large collection of constants. For example:

#define RED 0xf£0000
#define BLUE 0x0000ff
#define GREEN 0x00££00

To make constants available, their values can be stored in scripting language variables such as $RED, $BLUE, and $GREEN. Virtually all scripting languages provide C functions for creating
variables so installing constants is usually a trivial exercise.

4.2.4 Structures and classes

Although scripting languages have no trouble accessing simple functions and variables, accessing C/C++ structures and classes present a different problem. This is because the
implementation of structures is largely related to the problem of data representation and layout. Furthermore, certain language features are difficult to map to an interpreter. For instance, what
does C++ inheritance mean in a Perl interface?

The most straightforward technique for handling structures is to implement a collection of accessor functions that hide the underlying representation of a structure. For example,

struct Vector {
Vector();
~Vector();
double x, y, z;

}i

can be transformed into the following set of functions :

Vector *new_Vector();

void delete_Vector(Vector *v);

double Vector_ x_get(Vector *v);

double Vector_y get(Vector *v);

double Vector_z_get(Vector *v);

void Vector_ x set(Vector *v, double x);
void Vector_y_set(Vector *v, double y);

4.1 The two language view of the world

SWIG-4.2 Documentation

void Vector_z_set(Vector *v, double z);

Now, from an interpreter these function might be used as follows:

% set v [new Vector]
% Vector x_set $v 3.5
% Vector_y_get $v

% delete Vector $v

% ...

Since accessor functions provide a mechanism for accessing the internals of an object, the interpreter does not need to know anything about the actual representation of a Vector.
4.2.5 Proxy classes

In certain cases, it is possible to use the low-level accessor functions to create a proxy class, also known as a shadow class. A proxy class is a special kind of object that gets created in a
scripting language to access a C/C++ class (or struct) in a way that looks like the original structure (that is, it proxies the real C++ class). For example, if you have the following C++ definition :

class Vector {
public:
Vector () ;
~Vector();
double x, y, z;
}i

A proxy classing mechanism would allow you to access the structure in a more natural manner from the interpreter. For example, in Python, you might want to do this:

>>> v = Vector()
>>> v.x = 3

>>> v.y = 4

>>> v.z = -13
>>>

Similarly, in Perl5 you may want the interface to work like this:

$v = new Vector;
$v->{x} = 3;
$v->{y} = 4;
$v->{z} = -13;

Finally, in Tcl :

Vector v
v configure -x 3 -y 4 -z -13

When proxy classes are used, two objects are really at work--one in the scripting language, and an underlying C/C++ object. Operations affect both objects equally and for all practical
purposes, it appears as if you are simply manipulating a C/C++ object.

4.3 Building scripting language extensions

The final step in using a scripting language with your C/C++ application is adding your extensions to the scripting language itself. There are two primary approaches for doing this. The
preferred technique is to build a dynamically loadable extension in the form of a shared library. Alternatively, you can recompile the scripting language interpreter with your extensions added to
it.

4.3.1 Shared libraries and dynamic loading

To create a shared library or DLL, you often need to look at the manual pages for your compiler and linker. However, the procedure for a few common platforms is shown below:

Build a shared library for Solaris
gcc -fpic -c example.c example wrap.c -I/usr/local/include
1d -G example.o example wrap.o -o example.so

Build a shared library for Linux
gcc -fpic -c example.c example wrap.c -I/usr/local/include
gcc -shared example.o example wrap.o -o example.so

To use your shared library, you simply use the corresponding command in the scripting language (load, import, use, etc...). This will import your module and allow you to start using it. For
example:

% load ./example.so
% fact 4

24

%

When working with C++ codes, the process of building shared libraries may be more complicated--primarily due to the fact that C++ modules may need additional code in order to operate
correctly. On many machines, you can build a shared C++ module by following the above procedures, but changing the link line to the following :

c++ -shared example.o example wrap.o -o example.so

4.3.2 Linking with shared libraries

When building extensions as shared libraries, it is not uncommon for your extension to rely upon other shared libraries on your machine. In order for the extension to work, it needs to be able
to find all of these libraries at run-time. Otherwise, you may get an error such as the following :

4.3 Building scripting language extensions

SWIG-4.2 Documentation

>>> import graph
Traceback (innermost last):

File "<stdin>", line 1, in ?

File "/home/sci/datal/beazley/graph/graph.py", line 2, in ?

import graphc

ImportError: 1101:/home/sci/datal/beazley/bin/python: rld: Fatal Error: cannot
successfully map soname 'libgraph.so' under any of the filenames /usr/lib/libgraph.so:/
lib/libgraph.so:/lib/cmplrs/cc/libgraph.so:/usr/lib/cmplrs/cc/libgraph.so:
>>>

What this error means is that the extension module created by SWIG depends upon a shared library called "1ibgraph. so" that the system was unable to locate. To fix this problem, there are
a few approaches you can take.

« Link your extension and explicitly tell the linker where the required libraries are located. Often times, this can be done with a special linker flag such as -R, -rpath, etc. This is not
implemented in a standard manner so read the man pages for your linker to find out more about how to set the search path for shared libraries.

« Put shared libraries in the same directory as the executable. This technique is sometimes required for correct operation on non-Unix platforms.

« Set the UNIX environment variable LD_LIBRARY_PATH to the directory where shared libraries are located before running Python. Although this is an easy solution, it is not
recommended. Consider setting the path using linker options instead.

4.3.3 Static linking

With static linking, you rebuild the scripting language interpreter with extensions. The process usually involves compiling a short main program that adds your customized commands to the
language and starts the interpreter. You then link your program with a library to produce a new scripting language executable.

Although static linking is supported on all platforms, this is not the preferred technique for building scripting language extensions. In fact, there are very few practical reasons for doing this--
consider using shared libraries instead.

5 SWIG Basics

« Running SWIG
o Input format
o SWIG Output
o Comments
o C Preprocessor
o SWIG Directives
o Parser Limitations
« Wrapping Simple C Declarations
o Basic Type Handling
o Global Variables
o Constants
o A brief word about const
o A cautionary tale of char *
« Pointers and complex objects
o Simple pointers
o Run time pointer type checking
o Derived types, structs. and classes
o Undefined datatypes
o Typedef
« Other Practicalities
o Passing structures by value
o Return by value
o Linking to structure variables
o Linking to char *
o Arrays
o Creating read-only variables
o Renaming and ignoring declarations
= Simple renaming of specific identifiers
= Ignoring identifiers
= Advanced renaming support
= Limiting global renaming rules
= Ignoring everything then wrapping a few selected symbols
o Default/optional arguments
o Pointers to functions and callbacks
« Structures and unions
Typedef and structures
Character strings and structures
Array members
Structure data members
C constructors and destructors
Adding member functions to C structures
Nested structures
o Other things to note about structure wrapping
« Code Insertion
o The output of SWIG
o Code insertion blocks
o Inlined code blocks
o Initialization blocks
« An Interface Building Strategy
o Preparing a C program for SWIG
o The SWIG interface file
o Why use separate interface files?
o Getting the right header files
o What to do with main(

o

°

°

°

°

°

°

This chapter describes the basic operation of SWIG, the structure of its input files, and how it handles standard ISO C declarations. C++ support is described in the next chapter. However,
C++ programmers should still read this chapter to understand the basics. Specific details about each target language are described in later chapters.

5.1 Running SWIG

To run SWIG, use the swig command with options and a filename like this:

swig [options] filename

5.1 Running SWIG

27

SWIG-4.2 Documentation

where filename is a SWIG interface file or a C/C++ header file. Full help can be seen by running swig -help. Below is the common set of options that can be used. Additional options are
also defined for each target language. A full list can be obtained by running swig -<lang> -help for language </lang> specific options, for example, swig -ruby -help for Ruby.

Supported Target Language Options

-csharp - Generate C# wrappers

-d - Generate D wrappers

-go - Generate Go wrappers

-guile - Generate Guile wrappers

-java - Generate Java wrappers
-javascript - Generate Javascript wrappers
-lua - Generate Lua wrappers

-octave - Generate Octave wrappers

-perl5 - Generate Perl 5 wrappers

-php7 - Generate PHP 8 or later wrappers
-python - Generate Python wrappers

-r - Generate R (aka GNU S) wrappers
-ruby - Generate Ruby wrappers

-scilab - Generate Scilab wrappers

-tcl8 - Generate Tcl 8 wrappers

—-xml - Generate XML wrappers

Experimental Target Language Options
-mzscheme - Generate MzScheme/Racket wrappers
-ocaml - Generate OCaml wrappers

General Options

-addextern - Add extra extern declarations

-c++ - Enable C++ processing

-co <file> - Check <file> out of the SWIG library

—-copyctor - Automatically generate copy constructors wherever possible

—-cpperraswarn - Treat the preprocessor #error statement as #warning (default)

-cppext <ext> - Change file extension of generated C++ files to <ext>
(default is cxx)

-copyright - Display copyright notices

-debug-classes - Display information about the classes found in the interface

-debug-module <n>- Display module parse tree at stages 1-4, <n> is a csv list of stages

-debug-symtabs - Display symbol tables information

-debug-symbols - Display target language symbols in the symbol tables
-debug-csymbols - Display C symbols in the symbol tables
-debug-lsymbols - Display target language layer symbols

-debug-quiet - Display less parse tree node debug info when using other -debug options
-debug-tags - Display information about the tags found in the interface
-debug-template - Display information for debugging templates

-debug-top <n> - Display entire parse tree at stages 1-4, <n> is a csv list of stages
-debug-typedef - Display information about the types and typedefs in the interface

-debug-typemap - Display typemap debugging information
-debug-tmsearch - Display typemap search debugging information

-debug-tmused - Display typemaps used debugging information

-directors - Turn on director mode for all the classes, mainly for testing
-dirprot - Turn on wrapping of protected members for director classes (default)
-D<symbol>[=<value>] - Define symbol <symbol> (for conditional compilation)

-E - Preprocess only, does not generate wrapper code

-external-runtime [file] - Export the SWIG runtime stack

-fakeversion <v>- Make SWIG fake the program version number to <v>

-fcompact - Compile in compact mode

-features <list>- Set global features, where <list> is a comma separated list of
features, eg -features directors,autodoc=1
If no explicit value is given to the feature, a default of 1 is used

-fastdispatch - Enable fast dispatch mode to produce faster overload dispatcher code
-Fmicrosoft - Display error/warning messages in Microsoft format
-Fstandard - Display error/warning messages in commonly used format
—fvirtual - Compile in virtual elimination mode
-help - Display help
-I- - Don't search the current directory
-I<dir> - Look for SWIG files in directory <dir>
-ignoremissing - Ignore missing include files
-importall - Follow all #include statements as imports
-includeall - Follow all #include statements
-1l<ifile> - Include SWIG library file <ifile>
-Mmacroerrors - Report errors inside macros
-M - List all dependencies
-MD - Is equivalent to "-M -MF <file>', except "-E' is not implied
-MF <file> - Generate dependencies into <file> and continue generating wrappers
-MM - List dependencies, but omit files in SWIG library
—-MMD - Like "-MD', but omit files in SWIG library
-module <name> - Set module name to <name>
-MP - Generate phony targets for all dependencies
-MT <target> - Set the target of the rule emitted by dependency generation
-nocontract - Turn off contract checking
-nocpperraswarn - Do not treat the preprocessor #error statement as #warning
-nodefaultctor - Do not generate implicit default constructors
-nodefaultdtor - Do not generate implicit default destructors
-nodirprot - Do not wrap director protected members
-noexcept - Do not wrap exception specifiers
-nofastdispatch - Disable fast dispatch mode (default)
-nopreprocess - Skip the preprocessor step
-notemplatereduce - Disable reduction of the typedefs in templates
-0 - Enable the optimization options:
-fastdispatch -fvirtual
-0 <outfile> - Set name of C/C++ output file to <outfile>
-oh <headfile> - Set name of C++ output header file for directors to <headfile>
-outcurrentdir - Set default output dir to current dir instead of input file's path
-outdir <dir> - Set language specific files output directory to <dir>
-pcreversion - Display PCRE2 version information
-small - Compile in virtual elimination and compact mode
-std=<standard> - Set the C or C++ language <standard> for inputs
-swiglib - Report location of SWIG library and exit
-templatereduce - Reduce all the typedefs in templates
-U<symbol> - Undefine symbol <symbol>
-v - Run in verbose mode
-version - Display SWIG version number

5.1 Running SWIG

SWIG-4.2 Documentation

-Wall - Remove all warning suppression, also implies -Wextra

-Wallkw - Enable keyword warnings for all the supported languages

-Werror - Treat warnings as errors

-Wextra - Adds the following additional warnings: 309,403,405,512,321,322
-w<list> - Suppress/add warning messages, eg -w401,+321 - see Warnings.html
-xmlout <file> - Write XML version of the parse tree to <file> after normal processing

Arguments may also be passed in a command-line options file (also known as a response file) which is useful if they exceed the system command line length limit. To do this, put the
arguments in a file, then provide the file name prefixed with @ like so:

swig @file

The options read from the file are inserted in place of the file option. If the file does not exist, or cannot be read, then the option will be treated literally and not removed.

Options in the file are separated by whitespace. A whitespace character may be included in an option by surrounding the entire option in either single or double quotes. Any character
(including a backslash) may be included by prefixing the character to be included with a backslash. The file may itself contain additional @£ile options; any such options will be processed
recursively.

5.1.1 Input format

As input, SWIG expects a file containing ISO C/C++ declarations and special SWIG directives. More often than not, this is a special SWIG interface file which is usually denoted with a special
.1 or . swg suffix. In certain cases, SWIG can be used directly on raw header files or source files. However, this is not the most typical case and there are several reasons why you might not
want to do this (described later).

The most common format of a SWIG interface is as follows:

%module mymodule

3{

#include "myheader.h"

%}

// Now list ISO C/C++ declarations
int foo;

int bar(int x);

The module name is supplied using the special $module directive. Modules are described further in the Modules Introduction section.

Everything inthe ${ ... %} block is simply copied verbatim to the resulting wrapper file created by SWIG. This section is almost always used to include header files and other declarations
that are required to make the generated wrapper code compile. It is important to emphasize that just because you include a declaration in a SWIG input file, that declaration does not
automatically appear in the generated wrapper code---therefore you need to make sure you include the proper header files in the ${ ... %} section. It should be noted that the text enclosed

in%{ ... %} isnotparsed or interpreted by SWIG. The %{. . .%} syntax and semantics in SWIG is analogous to that of the declarations section used in input files to parser generation tools
such as yacc or bison.

5.1.2 SWIG Output

The output of SWIG is a C/C++ file that contains all of the wrapper code needed to build an extension module. SWIG may generate some additional files depending on the target language. By
default, an input file with the name file.1i is transformed into a filefile wrap.c orfile_wrap.cxx (depending on whether or not the —c++ option has been used). The name of the output
C/C++ file can be changed using the -o option. In certain cases, file suffixes are used by the compiler to determine the source language (C, C++, etc.). Therefore, you have to use the -o
option to change the suffix of the SWIG-generated wrapper file if you want something different than the default. For example:

$ swig -c++ -python -o example wrap.cpp example.i

The C/C++ output file created by SWIG often contains everything that is needed to construct an extension module for the target scripting language. SWIG is not a stub compiler nor is it usually
necessary to edit the output file (and if you look at the output, you probably won't want to). To build the final extension module, the SWIG output file is compiled and linked with the rest of your
C/C++ program to create a shared library.

For many target languages SWIG will also generate proxy class files in the target language. The default output directory for these language specific files is the same directory as the generated
C/C++ file. This can be modified using the —outdir option. For example:

$ swig -c++ -python -outdir pyfiles -o cppfiles/example wrap.cpp example.i

If the directories cppfiles and pyfiles exist, the following will be generated:

cppfiles/example wrap.cpp
pyfiles/example.py

If the —outcurrentdir option is used (without -o) then SWIG behaves like a typical C/C++ compiler and the default output directory is then the current directory. Without this option the
default output directory is the path to the input file. If o and -outcurrentdir are used together, —outcurrentdir is effectively ignored as the output directory for the language files is the
same directory as the generated C/C++ file if not overridden with —outdir.

5.1.3 Comments

C and C++ style comments may appear anywhere in interface files. In previous versions of SWIG, comments were used to generate documentation files. However, this feature is currently
under repair and will reappear in a later SWIG release.

5.1.4 C Preprocessor

Like C, SWIG preprocesses all input files through an enhanced version of the C preprocessor. All standard preprocessor features are supported including file inclusion, conditional compilation
and macros. However, #include statements are ignored unless the-includeall command line option has been supplied. The reason for disabling includes is that SWIG is sometimes

used to process raw C header files. In this case, you usually only want the extension module to include functions in the supplied header file rather than everything that might be included by that
header file (i.e., system headers, C library functions, etc.).

It should also be noted that the SWIG preprocessor skips all text enclosed inside a ${ . . . %} block. In addition, the preprocessor includes a number of macro handling enhancements that
make it more powerful than the normal C preprocessor. These extensions are described in the "Preprocessor" chapter.

5.1.5 SWIG Directives

Most of SWIG's operation is controlled by special directives that are always preceded by a "$" to distinguish them from normal C declarations. These directives are used to give SWIG hints or
to alter SWIG's parsing behavior in some manner.

Since SWIG directives are not legal C syntax, it is generally not possible to include them in header files. However, SWIG directives can be included in C header files using conditional
compilation like this:

5.1 Running SWIG

SWIG-4.2 Documentation

/* header.h --- Some header file */

/* SWIG directives -- only seen if SWIG is running */
#ifdef SWIG

gmodule foo

#endif

SWIG is a special preprocessing symbol defined by SWIG when it is parsing an input file.
5.1.6 Parser Limitations

Although SWIG can parse most C/C++ declarations, it does not provide a complete C/C++ parser implementation. Most of these limitations pertain to very complicated type declarations and
certain advanced C++ features. Specifically, the following features are not currently supported:

« Non-conventional type declarations. For example, SWIG does not support declarations such as the following (even though this is legal C):

/* Non-conventional placement of storage specifier (extern) */
const int extern Number;

/* Extra declarator grouping */
Matrix (foo); // A global variable

/* Extra declarator grouping in parameters */
void bar(Spam (Grok) (Doh));

In practice, few (if any) C programmers actually write code like this since this style is never featured in programming books. However, if you're feeling particularly obfuscated, you can
certainly break SWIG (although why would you want to?).

« Running SWIG on C++ source files (the code in a .C, .cpp or .cxx file) is not recommended. The usual approach is to feed SWIG header files for parsing C++ definitions and declarations.
The main reason is if SWIG parses a scoped definition or declaration (as is normal for C++ source files), it is ignored, unless a declaration for the symbol was parsed earlier. For example

/* bar not wrapped unless foo has been defined and
the declaration of bar within foo has already been parsed */
int foo::bar(int) {
. whatever ...

}

« Certain advanced features of C++ such as nested classes are not yet fully supported. Please see the C++ Nested classes section for more information.

In the event of a parsing error, conditional compilation can be used to skip offending code. For example:

#ifndef SWIG
. some bad declarations ...
#endif

Alternatively, you can just delete the offending code from the interface file.

One of the reasons why SWIG does not provide a full C++ parser implementation is that it has been designed to work with incomplete specifications and to be very permissive in its handling of
C/C++ datatypes (e.g., SWIG can generate interfaces even when there are missing class declarations or opaque datatypes). Unfortunately, this approach makes it extremely difficult to
implement certain parts of a C/C++ parser as most compilers use type information to assist in the parsing of more complex declarations (for the truly curious, the primary complication in the

implementation is that the SWIG parser does not utilize a separate typedef-name terminal symbol as described on p. 234 of K&R).
5.2 Wrapping Simple C Declarations

SWIG wraps simple C declarations by creating an interface that closely matches the way in which the declarations would be used in a C program. For example, consider the following interface
file:

%module example

%inline %{

extern double sin(double x);

extern int strcmp(const char *, const char *);
extern int Foo;

%}

#define STATUS 50

#define VERSION "1.1"

In this file, there are two functions sin() and stremp (), a global variable Foo, and two constants STATUS and VERSION. When SWIG creates an extension module, these declarations are
accessible as scripting language functions, variables, and constants respectively. For example, in Tcl:

% sin 3

5.2335956

% strcmp Dave Mike
-1

% puts $Foo

42

% puts $STATUS

50

% puts $VERSION
1.1

Or in Python:

>>> example.sin(3)

5.2335956

>>> example.strcmp('Dave', 'Mike')
-1

>>> print example.cvar.Foo

42

5.2 Wrapping Simple C Declarations

30

SWIG-4.2 Documentation

>>> print example.STATUS
50

>>> print example.VERSION
1.1

Whenever possible, SWIG creates an interface that closely matches the underlying C/C++ code. However, due to subtle differences between languages, run-time environments, and
semantics, it is not always possible to do so. The next few sections describe various aspects of this mapping.

5.2.1 Basic Type Handling

In order to build an interface, SWIG has to convert C/C++ datatypes to equivalent types in the target language. Generally, scripting languages provide a more limited set of primitive types than
C. Therefore, this conversion process involves a certain amount of type coercion.

Most scripting languages provide a single integer type that is implemented using the int or long datatype in C. The following list shows all of the C datatypes that SWIG will convert to and
from integers in the target language:

int

short

long

unsigned
signed
unsigned short
unsigned long
unsigned char
signed char
bool

When an integral value is converted from C, a cast is used to convert it to the representation in the target language. Thus, a 16 bit short in C may be promoted to a 32 bit integer. When
integers are converted in the other direction, the value is cast back into the original C type. If the value is too large to fit, it is silently truncated.

unsigned char and signed char are special cases that are handled as small 8-bit integers. Normally, the char datatype is mapped as a one-character ASCII string.
The bool datatype is cast to and from an integer value of 0 and 1 unless the target language provides a special boolean type.

Some care is required when working with large integer values. Most scripting languages use 32-bit integers so mapping a 64-bit long integer may lead to truncation errors. Similar problems
may arise with 32 bit unsigned integers (which may appear as large negative numbers). As a rule of thumb, the int datatype and all variations ofchar and short datatypes are safe to use.
Forunsigned int and long datatypes, you will need to carefully check the correct operation of your program after it has been wrapped with SWIG.

Although the SWIG parser supports the long long datatype, not all language modules support it. This is because long long usually exceeds the integer precision available in the target
language. In certain modules such as Tcl and Perl5, long long integers are encoded as strings. This allows the full range of these numbers to be represented. However, it does not allow
long long values to be used in arithmetic expressions. It should also be noted that although long long is part of the ISO C99 standard, it is not universally supported by all C compilers.
Make sure you are using a compiler that supports long long before trying to use this type with SWIG.

SWIG recognizes the following floating point types :

float
double

Floating point numbers are mapped to and from the natural representation of floats in the target language. This is almost always a C double. The rarely used datatype of long double is not
supported by SWIG.

The char datatype is mapped into a NULL terminated ASCII string with a single character. When used in a scripting language it shows up as a tiny string containing the character value. When
converting the value back into C, SWIG takes a character string from the scripting language and strips off the first character as the char value. Thus if the value "foo" is assigned to a char
datatype, it gets the value “f'.

The char * datatype is handled as a NULL-terminated ASCII string. SWIG maps this into a 8-bit character string in the target scripting language. SWIG converts character strings in the target
language to NULL terminated strings before passing them into C/C++. The default handling of these strings does not allow them to have embedded NULL bytes. Therefore, the char *
datatype is not generally suitable for passing binary data. However, it is possible to change this behavior by defining a SWIG typemap. See the chapter on Typemaps for details about this.

At this time, SWIG provides limited support for Unicode and wide-character strings (the C wchar_t type). Some languages provide typemaps for wchar_t, but bear in mind these might not be
portable across different operating systems. This is a delicate topic that is poorly understood by many programmers and not implemented in a consistent manner across languages. For those
scripting languages that provide Unicode support, Unicode strings are often available in an 8-bit representation such as UTF-8 that can be mapped to the char * type (in which case the
SWIG interface will probably work). If the program you are wrapping uses Unicode, there is no guarantee that Unicode characters in the target language will use the same internal
representation (e.g., UCS-2 vs. UCS-4). You may need to write some special conversion functions.

5.2.2 Global Variables

Whenever possible, SWIG maps C/C++ global variables into scripting language variables. For example,

%module example
double foo;

results in a scripting language variable like this:

Tcl

set foo [3.5] ;# Set foo to 3.5
puts $foo ;# Print the value of foo
Python

cvar.foo = 3.5 # Set foo to 3.5
print cvar.foo # Print value of foo
Perl

$foo = 3.5; # Set foo to 3.5
print $foo, "\n"; # Print value of foo
Ruby

Module.foo = 3.5 # Set foo to 3.5
print Module.foo, "\n" # Print value of foo

Whenever the scripting language variable is used, the underlying C global variable is accessed. Although SWIG makes every attempt to make global variables work like scripting language
variables, it is not always possible to do so. For instance, in Python, all global variables must be accessed through a special variable object known as cvar (shown above). In Ruby, variables
are accessed as attributes of the module. Other languages may convert variables to a pair of accessor functions. For example, the Java module generates a pair of functions double

5.2 Wrapping Simple C Declarations

31

SWIG-4.2 Documentation

get_foo() and set_foo(double val) that are used to manipulate the value.

Finally, if a global variable has been declared as const, it only supports read-only access. Note: this behavior is new to SWIG-1.3. Earlier versions of SWIG incorrectly handled const and
created constants instead.

5.2.3 Constants

Constants can be created using #define, enumerations, or a special $constant directive. The following interface file shows a few valid constant declarations :

#define I_CONST 5 // An integer constant
#define PI 3.14159 // A Floating point constant
#define S_CONST "hello world" // A string constant

#define NEWLINE ‘\n' // Character constant

enum boolean {NO=0, YES=1};

enum months {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC};

%constant double BLAH = 42.37;

#define PI_4 PI/4

#define FLAGS 0x04 | 0x08 | 0x40

In #define declarations, the type of a constant is inferred by syntax. For example, a number with a decimal point is assumed to be floating point. In addition, SWIG must be able to fully
resolve all of the symbols used in a #define in order for a constant to actually be created. This restriction is necessary because #define is also used to define preprocessor macros that are
definitely not meant to be part of the scripting language interface. For example:

#define EXTERN extern

EXTERN void foo();

In this case, you probably don't want to create a constant called EXTERN (what would the value be?). In general, SWIG will not create constants for macros unless the value can be completely
determined by the preprocessor. For instance, in the above example, the declaration

#define PI_4 PI/4

defines a constant because PI was already defined as a constant and the value is known. However, for the same conservative reasons even a constant with a simple cast will be ignored, such
as

#define F_CONST (double) 5 // A floating point constant with cast

This logic can lead to false attempts at converting #define into $constant though. For example the following case does not have any undefined symbols within the macro:

// For indicating pure virtual functions such as: virtual void f£() PURE;
#define PURE = 0

A warning is issued:

pure.h:1: Warning 305: Bad constant value (ignored).

In such cases simply ignore the warning or suppress it using the normal warning suppression techniques.

The use of constant expressions is allowed, but SWIG does not evaluate them. Rather, it passes them through to the output file and lets the C compiler perform the final evaluation (SWIG
does perform a limited form of type-checking however).

For enumerations, it is critical that the original enum definition be included somewhere in the interface file (either in a header file or in the ${ %} block). SWIG only translates the enumeration
into code needed to add the constants to a scripting language. It needs the original enumeration declaration in order to get the correct enum values as assigned by the C compiler.

The $constant directive is used to more precisely create constants corresponding to different C datatypes. Although it is not usually needed for simple values, it is more useful when working
with pointers and other more complex datatypes. Typically, $constant is only used when you want to add constants to the scripting language interface that are not defined in the original
header file.

5.2.4 A brief word about const

A common confusion with C programming is the semantic meaning of the const qualifier in declarations--especially when it is mixed with pointers and other type modifiers. In fact, previous
versions of SWIG handled const incorrectly--a situation that SWIG-1.3.7 and newer releases have fixed.

Starting with SWIG-1.3, all variable declarations, regardless of any use of const, are wrapped as global variables. If a declaration happens to be declared as const, it is wrapped as a read-
only variable. To tell if a variable is const or not, you need to look at the right-most occurrence of the const qualifier (that appears before the variable name). If the right-most const occurs
after all other type modifiers (such as pointers), then the variable is const. Otherwise, it is not.

Here are some examples of const declarations.

const char aj; // A constant character

char const b; // A constant character (the same)

char *const c; // A constant pointer to a character

const char *const d; // A constant pointer to a constant character

Here is an example of a declaration that is not const:

const char *e; // A pointer to a constant character. The pointer
// may be modified.

In this case, the pointer e can change---it's only the value being pointed to that is read-only.
Please note that for const parameters or return types used in a function, SWIG pretty much ignores the fact that these are const, see the section on const-correctness for more information.

Compatibility Note: One reason for changing SWIG to handleconst declarations as read-only variables is that there are many situations where the value of a const variable might change.
For example, a library might export a symbol as const in its public API to discourage modification, but still allow the value to change through some other kind of internal mechanism.

5.2 Wrapping Simple C Declarations

32

SWIG-4.2 Documentation

Furthermore, programmers often overlook the fact that with a constant declaration like char *const, the underlying data being pointed to can be modified--it's only the pointer itself that is
constant. In an embedded system, a const declaration might refer to a read-only memory address such as the location of a memory-mapped I/O device port (where the value changes, but
writing to the port is not supported by the hardware). Rather than trying to build a bunch of special cases into the const qualifier, the new interpretation ofconst as "read-only" is simple and
exactly matches the actual semantics of const in C/C++. If you really want to create a constant as in older versions of SWIG, use the $constant directive instead. For example:

%constant double PI = 3.14159;

or

#ifdef SWIG

#define const %constant
#endif

const double foo = 3.4;
const double bar = 23.4;
const int spam = 42;
#ifdef SWIG

#undef const

#endif

5.2.5 A cautionary tale of char *
Before going any further, there is one bit of caution involving char * that must now be mentioned. When strings are passed from a scripting language to a C char *, the pointer usually
points to string data stored inside the interpreter. It is aimost always a really bad idea to modify this data. Furthermore, some languages may explicitly disallow it. For instance, in Python,
strings are supposed to be immutable. If you violate this, you will probably receive a vast amount of wrath when you unleash your module on the world.

The primary source of problems are functions that might modify string data in place. A classic example would be a function like this:

char *strcat(char *s, const char *t)

Although SWIG will certainly generate a wrapper for this, its behavior will be undefined. In fact, it will probably cause your application to crash with a segmentation fault or other memory related
problem. This is because s refers to some internal data in the target language---data that you shouldn't be touching.

The bottom line: don't rely on char * for anything other than read-only input values. However, it must be noted that you could change the behavior of SWIG using typemaps.

5.3 Pointers and complex objects

Most C programs manipulate arrays, structures, and other types of objects. This section discusses the handling of these datatypes.
5.3.1 Simple pointers

Pointers to primitive C datatypes such as

int *
double ***
char **

are fully supported by SWIG. Rather than trying to convert the data being pointed to into a scripting representation, SWIG simply encodes the pointer itself into a representation that contains
the actual value of the pointer and a type-tag. Thus, the SWIG representation of the above pointers (in Tcl), might look like this:

10081012 _p_ int
_1008el24 ppp double
_f8ac_pp_char

A NULL pointer is represented by the string "NULL" or the value 0 encoded with type information.

All pointers are treated as opaque objects by SWIG. Thus, a pointer may be returned by a function and passed around to other C functions as needed. For all practical purposes, the scripting
language interface works in exactly the same way as you would use the pointer in a C program. The only difference is that there is no mechanism for dereferencing the pointer since this would
require the target language to understand the memory layout of the underlying object.

The scripting language representation of a pointer value should never be manipulated directly. Even though the values shown look like hexadecimal addresses, the numbers used may differ
from the actual machine address (e.g., on little-endian machines, the digits may appear in reverse order). Furthermore, SWIG does not normally map pointers into high-level objects such as
associative arrays or lists (for example, converting an int * into an list of integers). There are several reasons why SWIG does not do this:

« There is not enough information in a C declaration to properly map pointers into higher level constructs. For example, an int * may indeed be an array of integers, but if it contains ten
million elements, converting it into a list object is probably a bad idea.

« The underlying semantics associated with a pointer is not known by SWIG. For instance, an int * might not be an array at all--perhaps it is an output value!

« By handling all pointers in a consistent manner, the implementation of SWIG is greatly simplified and less prone to error.

5.3.2 Run time pointer type checking

By allowing pointers to be manipulated from a scripting language, extension modules effectively bypass compile-time type checking in the C/C++ compiler. To prevent errors, a type signature
is encoded into all pointer values and is used to perform run-time type checking. This type-checking process is an integral part of SWIG and can not be disabled or modified without using
typemaps (described in later chapters).

Like C, void * matches any kind of pointer. Furthermore,NULL pointers can be passed to any function that expects to receive a pointer. Although this has the potential to cause a crash,
NULL pointers are also sometimes used as sentinel values or to denote a missing/empty value. Therefore, SWIG leaves NULL pointer checking up to the application.

5.3.3 Derived types, structs, and classes
For everything else (structs, classes, arrays, etc...) SWIG applies a very simple rule :
Everything else is a pointer

In other words, SWIG manipulates everything else by reference. This model makes sense because most C/C++ programs make heavy use of pointers and SWIG can use the type-checked
pointer mechanism already present for handling pointers to basic datatypes.

Although this probably sounds complicated, it's really quite simple. Suppose you have an interface file like this :

gmodule fileio
FILE *fopen(char *, char *);

5.3 Pointers and complex objects 33

SWIG-4.2 Documentation

int fclose(FILE *);

unsigned fread(void *ptr, unsigned size, unsigned nobj, FILE *);
unsigned fwrite(void *ptr, unsigned size, unsigned nobj, FILE ¥*);
void *malloc(int nbytes);

void free(void *);

In this file, SWIG doesn't know what a FILE is, but since it's used as a pointer, so it doesn't really matter what it is. If you wrapped this module into Python, you can use the functions just like
you expect :

Copy a file
def filecopy(source, target):
f1 = fopen(source, "r")
f2 = fopen(target, "w")
buffer = malloc(8192)
nbytes = fread(buffer, 8192, 1, £f1)
while (nbytes > 0):
fwrite(buffer, 8192, 1, £2)
nbytes = fread(buffer, 8192, 1, f1)
free(buffer)

In this case £1, £2, and buf fer are all opaque objects containing C pointers. It doesn't matter what value they contain--our program works just fine without this knowledge.
5.3.4 Undefined datatypes

When SWIG encounters an undeclared datatype, it automatically assumes that it is a structure or class. For example, suppose the following function appeared in a SWIG input file:

void matrix_multiply(Matrix *a, Matrix *b, Matrix *c);

SWIG has no idea what a "Matrix" is. However, it is obviously a pointer to something so SWIG generates a wrapper using its generic pointer handling code.

Unlike C or C++, SWIG does not actually care whether Matrix has been previously defined in the interface file or not. This allows SWIG to generate interfaces from only partial or limited
information. In some cases, you may not care what a Matrix really is as long as you can pass an opaque reference to one around in the scripting language interface.

An important detail to mention is that SWIG will gladly generate wrappers for an interface when there are unspecified type names. However, all unspecified types are internally handled as
pointers to structures or classes! For example, consider the following declaration:

void foo(size_t num);

If size_t is undeclared, SWIG generates wrappers that expect to receive a type of size_t * (this mapping is described shortly). As a result, the scripting interface might behave strangely.
For example:

foo(40);
TypeError: expected a _p_size t.

The only way to fix this problem is to make sure you properly declare type names using typedef.
5.3.5 Typedef

Like C, typedef can be used to define new type names in SWIG. For example:

typedef unsigned int size_t;

typedef definitions appearing in a SWIG interface are not propagated to the generated wrapper code. Therefore, they either need to be defined in an included header file or placed in the
declarations section like this:

%{

/* Include in the generated wrapper file */
typedef unsigned int size_ t;

%}

/* Tell SWIG about it */

typedef unsigned int size t;

or

%inline %{
typedef unsigned int size_t;
%}

In certain cases, you might be able to include other header files to collect type information. For example:

gmodule example
%import "sys/types.h"

In this case, you might run SWIG as follows:

$ swig -I/usr/include -includeall example.i

It should be noted that your mileage will vary greatly here. System headers are notoriously complicated and may rely upon a variety of non-standard C coding extensions (e.g., such as special
directives to GCC). Unless you exactly specify the right include directories and preprocessor symbols, this may not work correctly (you will have to experiment).

SWIG tracks typedef declarations and uses this information for run-time type checking. For instance, if you use the above typedef and had the following function declaration:

void foo(unsigned int *ptr);

5.3 Pointers and complex objects

SWIG-4.2 Documentation

The corresponding wrapper function will accept arguments of type unsigned int * orsize t *.
5.4 Other Practicalities

So far, this chapter has presented almost everything you need to know to use SWIG for simple interfaces. However, some C programs use idioms that are somewhat more difficult to map to a
scripting language interface. This section describes some of these issues.

5.4.1 Passing structures by value

Sometimes a C function takes structure parameters that are passed by value. For example, consider the following function:

double dot_product(Vector a, Vector b);

To deal with this, SWIG transforms the function to use pointers by creating a wrapper equivalent to the following:

double wrap_dot_product(Vector *a, Vector *b) {
Vector x = *a;
Vector y = *b;
return dot_product(x, y);

}

In the target language, the dot_product () function now accepts pointers to Vectors instead of Vectors. For the most part, this transformation is transparent so you might not notice.

5.4.2 Return by value

C functions that return structures or classes datatypes by value are more difficult to handle. Consider the following function:

Vector cross_product(Vector vl, Vector v2);

This function wants to return Vvector, but SWIG only really supports pointers. As a result, SWIG creates a wrapper like this:

Vector *wrap_cross_product(Vector *vl, Vector *v2) {
Vector x = *vl;
Vector y = *v2;
Vector *result;
result = (Vector *) malloc(sizeof(Vector));
*(result) = cross(x, y)i;
return result;

or if SWIG was run with the —c++ option:

Vector *wrap_cross(Vector *vl, Vector *v2) {
Vector x = *vl;
Vector y = *v2;
Vector *result = new Vector(cross(x, y)); // Uses default copy constructor
return result;

In both cases, SWIG allocates a new object and returns a reference to it. It is up to the user to delete the returned object when it is no longer in use. Clearly, this will leak memory if you are
unaware of the implicit memory allocation and don't take steps to free the result. That said, it should be noted that some language modules can now automatically track newly created objects
and reclaim memory for you. Consult the documentation for each language module for more details.

It should also be noted that the handling of pass/return by value in C++ has some special cases. For example, the above code fragments don't work correctly if vector doesn't define a default
constructor. The section on SWIG and C++ has more information about this case.

5.4.3 Linking to structure variables

When global variables or class members involving structures are encountered, SWIG handles them as pointers. For example, a global variable like this

Vector unit_ij;

gets mapped to an underlying pair of set/get functions like this :

Vector *unit_i get() {
return &unit_i;

}

void unit_i_set(Vector *value) {
unit_i = *value;

}

Again some caution is in order. A global variable created in this manner will show up as a pointer in the target scripting language. It would be an extremely bad idea to free or destroy such a
pointer. Also, C++ classes must supply a properly defined copy constructor in order for assignment to work correctly.

5.4.4 Linking to char *

When a global variable of type char * appears, SWIG usesmalloc () ornew to allocate memory for the new value. Specifically, if you have a variable like this

char *foo;

SWIG generates the following code:

/* C mode */
void foo_set(char *value) {
free(foo);
foo = (char *) malloc(strlen(value)+l);

5.4 Other Practicalities 35

write:

A col

In th

SWIG-4.2 Documentation

strcpy(foo, value);

}

/* C++ mode. When -c++ option is used */
void foo_set(char *value) {
delete [] foo;
foo = new char[strlen(value)+1];
strcpy(foo, value);

}

If this is not the behavior that you want, consider making the variable read-only using the ¢ immutable directive. Alternatively, you might write a short assist-function to set the value exactly
like you want. For example:
%inline %{
void set_foo(char *value) {
strncpy(foo, value, 50);
}
%}
Note: If you write an assist function like this, you will have to call it as a function from the target scripting language (it does not work like a variable). For example, in Python you will have to
>>> set_foo("Hello World")
mmon mistake with char * variables is to link to a variable declared like this:
char *VERSION = "1.0";
is case, the variable will be readable, but any attempt to change the value results in a segmentation or general protection fault. This is due to the fact that SWIG is trying to release the old
value using free or delete when the string literal value currently assigned to the variable wasn't allocated using malloc () or new. To fix this behavior, you can either mark the variable as

read

When variables of type const char * are declared, SWIG still generates functions for setting and getting the value. However, the default behavior does not release the previous contents

-only, write a typemap (as described in Chapter 6), or write a special set function as shown. Another alternative is to declare the variable as an array:

char VERSION[64] = "1.0";

(resulting in a possible memory leak). In fact, you may get a warning message such as this when wrapping such a variable:

The

example.i:20. Typemap warning. Setting const char * variable may leak memory

reason for this behavior is that const char * variables are often used to point to string literals. For example:

const char *foo = "Hello World\n";

Therefore, it's a really bad idea to call £ree () on such a pointer. On the other hand, it is legal to change the pointer to point to some other value. When setting a variable of this type, SWIG
allocates a new string (using malloc or new) and changes the pointer to point to the new value. However, repeated modifications of the value will result in a memory leak since the old value is
not released.

5.45

Arrays

Arrays are fully supported by SWIG, but they are always handled as pointers instead of mapping them to a special array object or list in the target language. Thus, the following declarations :

int foobar(int a[40]);
void grok(char *argv[]);
void transpose(double a[20][20]);

are processed as if they were really declared like this:

Like

int foobar(int *a);
void grok(char **argv);
void transpose(double (*a)[20]);

C, SWIG does not perform array bounds checking. It is up to the user to make sure the pointer points to a suitably allocated region of memory.

Multi-dimensional arrays are transformed into a pointer to an array of one less dimension. For example:

int [10]; // Maps to int *
int [10][20]; // Maps to int (*)[20]
int [10][20][30]; // Maps to int (*)[20][30]

It is important to note that in the C type system, a multidimensional array a[11 1 is NOT equivalent to a single pointer *a or a double pointer such as **a. Instead, a pointer to an array is used
(as shown above) where the actual value of the pointer is the starting memory location of the array. The reader is strongly advised to dust off their C book and re-read the section on arrays

befo

re using them with SWIG.

Array variables are supported, but are read-only by default. For example:

In th

int a[100][200];

is case, reading the variable 'a' returns a pointer of type int (*)[200] that points to the first element of the arraysa[0][0]. Trying to modify 'a’ results in an error. This is because

SWIG does not know how to copy data from the target language into the array. To work around this limitation, you may want to write a few simple assist functions like this:

5.4 Other

%inline %{
void a_set(int i, int j, int val) {
a[il[j] = val;

Practicalities

36

SWIG-4.2 Documentation

}

int a_get(int i, int j) {
return a[i][]j];

}

%)

To dynamically create arrays of various sizes and shapes, it may be useful to write some helper functions in your interface. For example:

// Some array helpers
%inline %{
/* Create any sort of [size] array */
int *int_array(int size) {
return (int *) malloc(size*sizeof(int));
}
/* Create a two-dimension array [size][10] */
int (*int_array_10(int size))[10] {
return (int (*)[10]) malloc(size*10*sizeof(int));
}
%}

Arrays of char are handled as a special case by SWIG. In this case, strings in the target language can be stored in the array. For example, if you have a declaration like this,

char pathname[256];

SWIG generates functions for both getting and setting the value that are equivalent to the following code:

char *pathname get() {
return pathname;

}
void pathname set(char *value) {
strncpy(pathname, value, 256);

}

In the target language, the value can be set like a normal variable.

5.4.6 Creating read-only variables

A read-only variable can be created by using the $immutable directive as shown :

// File : interface.i

int a; // Can read/write
%immutable;

int b, ¢, d; // Read only variables
gmutable;

double x, y; // read/write

The $immutable directive enables read-only mode until it is explicitly disabled using the $mutable directive. As an alternative to turning read-only mode off and on like this, individual
declarations can also be tagged as immutable. For example:

%immutable x; // Make x read-only
double x; // Read-only (from earlier %immutable directive)
double y; // Read-write

The $mutable and $immutable directives are actually %feature directives defined like this:

#define %immutable %feature("immutable")
#define %mutable ¢feature("immutable", "")

If you wanted to make all wrapped variables read-only, barring one or two, it might be easier to take this approach:

%immutable; // Make all variables read-only
%feature("immutable", "0") x; // except, make x read/write
double x;

double y;

double z;

Read-only variables are also created when declarations are declared as const. For example:

const int foo; /* Read only variable */
char * const version="1.0"; /* Read only variable */

5.4.7 Renaming and ignoring declarations
5.4.7.1 Simple renaming of specific identifiers

Normally, the name of a C declaration is used when that declaration is wrapped into the target language. However, this may generate a conflict with a keyword or already existing function in
the scripting language. To resolve a name conflict, you can use the $rename directive as shown :

// interface.i

$rename (my_print) print;

5.4 Other Practicalities

SWIG-4.2 Documentation

extern void print(const char *);

$rename(foo) a really long_and_annoying_name;
extern int a really long_and_annoying_name;

SWIG still calls the correct C function, but in this case the function print () will really be called 'my_print ()" in the target language.

The placement of the $rename directive is arbitrary as long as it appears before the declarations to be renamed. A common technique is to write code for wrapping a header file like this:

// interface.i

$rename(my_print) print;
$rename(foo) a really long_and_annoying_name;

%include "header.h"

$rename applies a renaming operation to all future occurrences of a name. The renaming applies to functions, variables, class and structure names, member functions, and member data. For
example, if you had two-dozen C++ classes, all with a member function named “print' (which is a keyword in Python), you could rename them all to “output' by specifying :

%rename (output) print; // Rename all “print' functions to “output'

A new 2rename for the same name will replace the currentsrename for all uses after it in the file, and setting the new name to " will remove the rename. So, for instance, if you wanted to
rename some things in one file and not in another, you could do:

$rename (printl) print;

%include "headerl.h" //Anything "print" in here will become "printl"
%rename (print2) print;

%include "header2.h" //Anything "print" in here will become "print2"
%rename("") print;

%include "header3.h" //Anything "print" in here will remain "print"

SWIG does not normally perform any checks to see if the functions it wraps are already defined in the target scripting language. However, if you are careful about namespaces and your use of
modules, you can usually avoid these problems.

When wrapping C code, simple use of identifiers/symbols with $rename usually suffices. When wrapping C++ code, simple use of simple identifiers/symbols with ¢ rename might be too
limiting when using C++ features such as function overloading, default arguments, namespaces, template specialization etc. If you are using the $rename directive and C++, make sure you
read the SWIG and C++ chapter and in particular the section onRenaming and ambiguity resolution for method overloading and default arguments.

o

.4.7.2 Ignoring identifiers

Closely related to $rename is the $ignore directive. $ignore instructs SWIG to ignore declarations that match a given identifier. For example:

%ignore print; // Ignore all declarations named print
%ignore MYMACRO; // Ignore a macro

#define MYMACRO 123

void print(const char *);

Any function, variable etc which matches $ignore will not be wrapped and therefore will not be available from the target language. A common usage of $ignore is to selectively remove
certain declarations from a header file without having to add conditional compilation to the header. However, it should be stressed that this only works for simple declarations. If you need to
remove a whole section of problematic code, the SWIG preprocessor should be used instead.

5.4.7.3 Advanced renaming support

While writing $rename for specific declarations is simple enough, sometimes the same renaming rule needs to be applied to many, maybe all, identifiers in the SWIG input. For example, it
may be necessary to apply some transformation to all the names in the target language to better follow its naming conventions, like adding a specific prefix to all wrapped functions. Doing it
individually for each function is impractical so SWIG supports applying a renaming rule to all declarations if the name of the identifier to be renamed is not specified:

$rename("myprefix %s") ""; // print -> myprefix print

This also shows that the argument of $rename doesn't have to be a literal string but can be a printf ()-like format string. In the simplest form, "¢s" is replaced with the name of the original
declaration, as shown above. However this is not always enough and SWIG provides extensions to the usual format string syntax to allow applying a (SWIG-defined) function to the argument.
For example, to wrap all C functions do_something_long() as more Java-like doSomethingLong() you can use the "lowercamelcase" extended format specifier like this:

$rename("%(lowercamelcase)s") ""; // foo_bar -> fooBar; FooBar -> fooBar

Some functions can be parametrized, for example the "strip*" one strips the provided prefix from its argument. The prefix is specified as part of the format string, following a colon after the
function name:

%rename ("% (strip:[wx])s") ""; // wxHello -> Hello; FooBar -> FooBar

Below is the table summarizing all currently defined functions with an example of applying each one. Note that some of them have two names, a shorter one and a more descriptive one, but
the two functions are otherwise equivalent:

Function Returns Example (in/out)
uppercase Of upper Upper case version of the string. Print PRINT
lowercase Ofr lower Lower case version of the string. Print print
title String with first letter capitalized and the rest in lower case. print Print
firstuppercase String with the first letter capitalized and the rest unchanged. printIt PrintIt
firstlowercase String with the first letter in lower case and the rest unchanged. PrintIt printIt

5.4 Other Practicalities

38

SWIG-4.2 Documentation

String with capitalized first letter and any letter following an underscore (which are removed in the process) and rest in lower

camelcase Orctitle case. print_it PrintIt
lowercamelcase Or String with every letter following an underscore (which is removed in the process) capitalized and rest, including the first letter, int it intTt
lctitle in lower case. print i prin
. Lower case string with underscores inserted before every upper case letter in the original string and any number not at the end . . .
undercase orutitle R . L PrintIt print it
of string. Logically, this is the reverse of camelcase. —
schemify String with all underscores replaced with dashes, resulting in more Lispers/Schemers-pleasing name. print_it print-it
. X String without the given prefix or the original string if it doesn't start with this prefix. Note that square brackets should be used . .
strip:[prefix] . . wxPrint Print
literally, e.g. $rename ("strip:[wx]")
rstrip: [suffix] String without the given suffix or the original string if it doesn't end with this suffix. Note that square brackets should be used PrintCls Print

literally, e.g. $rename ("rstrip:[Cls]")

regex:/pattern/subst/

String after (Perl-like) regex substitution operation. This function allows applying arbitrary regular expressions to the identifier
names. The pattern part is a regular expression in Perl syntax (as supported by the Perl Compatible Regular Expressions)
(PCREZ2 library) and the subststring can contain back-references of the form \N where N is a digit from 0 to 9, or one of the
following escape sequences: \1, \L, \u, \U or \E. The back-references are replaced with the contents of the corresponding
capture group while the escape sequences perform the case conversion in the substitution string: \1 and \L convert to the
lower case, while \u and \U convert to the upper case. The difference between the elements of each pair is that \1 and \u
change the case of the next character only, while \L. and \U do it for all the remaining characters or until\E is encountered.
Finally please notice that backslashes need to be escaped in C strings, so in practice "\\" must be used in all these escape
sequences. For example, to remove any alphabetic prefix before an underscore and capitalize the remaining part you could
use the following directive: $rename ("regex:/(\\w+)_(.*)/\\u\\2/")

prefix_print | Print

The

As b

most general function of all of the above ones is the regex one. Here are some more examples of its use:

// strip the wx prefix from all identifiers except those starting with wxEVT
g$rename ("% (regex:/wx(?!EVT) (.*)/\\1/)s") ""; // wxSomeWidget -> SomeWidget
// WXEVT_PAINT -> wxEVT_PAINT

// RApply a rule for renaming the enum elements to avoid the common prefixes
// which are redundant in C#/Java
$rename("%(regex:/"([A-Z][a-z]+)+_(.*)/\\2/)s", %$isenumitem) ""; // Colour Red -> Red

// Remove all "Set/Get" prefixes.
$rename ("% (regex:/" (Set|Get) (.*)/\\2/)s") ""; // SetValue -> Value
// Getvalue -> Value

efore, everything that was said above about $rename also applies to $ignore. In fact, the latter is just a special case of the former and ignoring an identifier is the same as renaming

the special "$ignore" value. So the following snippets

and

%ignore print;

%rename("$ignore") print;

are exactly equivalent and $rename can be used to selectively ignore multiple declarations using the previously described matching possibilities.

5.4.7.4 Limiting global renaming rules

itto

As explained in the previous sections, it is possible to either rename individual declarations or apply a rename rule to all of them at once. In practice, the latter is however rarely appropriate as
there are always some exceptions to the general rules. To deal with them, the scope of an unnamed $rename can be limited using subsequentmatch parameters. They can be applied to any

of th

e attributes associated by SWIG with the declarations appearing in its input. For example:

%rename("foo", match$name="bar") "";

can be used to achieve the same effect as the simpler

and

%rename("foo") bar;

match="enumitem" restricts it to the enum elements. SWIG also provides convenience macros for such match expressions, for example

%rename("%(title)s", %$isenumitem) "";
// same as:
%rename("%(title)s", match="enumitem") "";

will capitalize the names of all the enum elements but not change the case of the other declarations. Similarly, $$isclass, $$isfunction, $$isconstructor, $$isunion,
%$$istemplate, and $$isvariable can be used. Many other checks are possible and this documentation is not exhaustive, see the "%rename predicates” section in swig. swg for the full
list of supported match expressions.

S0 is not very interesting on its own. However match can also be applied to the declaration type, for example match="class" restricts the match to class declarations only (in C++) and

A logical not is also possible by using notmatch. For example, notmatch="enumitem" will restrict the match to all items that are not enum elements. There is also a $$not macro which
simply expands to "not". Be careful using this as some of the other macros in swig.swg are complex expressions and so it will only "notmatch” the first part of the expression.

%rename("%(title)s", %$not %$isenumitem) "";
// same as:
%rename("%(title)s", notmatch="enumitem") "";

For a comprehensive understanding of how the matching works, the internal parse tree needs to be examined using the command line option: ~-debug-module 1 -debug-quiet. A snippet

of th

5.4 Other

e resulting output might be:

+++ destructor
| access - "public"

Practicalities

39

https://www.pcre.org/

SWIG-4.2 Documentation

| decl - "£()."

| ismember - e

| name - "~Shape"
| storage - "virtual"
| sym:name - "~Shape"

Here the node type is a "destructor" and in order to match all destructor nodes, use match="destructor". To match one of the listed attributes in the node, such as when the storage is
virtual, use match$storage="virtual". This will match all nodes that have a storage attribute set to "virtual". To match only virtual destructors, combine them and use
match="destructor", match$storage="virtual".

While the vast majority of these internal parse tree nodes are unlikely to change from one version of SWIG to the next, use these matching rules at your own risk as there are no
guarantees that they will not change.

In addition to literally matching some string with match you can also use regexmatch or notregexmatch to match a string against a regular expression. For example, to ignore all functions
having "Old" as a suffix you could use

%rename("$ignore", regexmatch$name="0lds") "";

For simple cases like this, specifying the regular expression for the declaration name directly can be preferable and can also be done using regextarget:

%rename("$ignore", regextarget=1) "01ld$";

Notice that the check is done only against the name of the declaration itself, if you need to match the full name of a C++ declaration you must use fullname attribute:

%rename("$ignore", regextarget=1, fullname=1) "NameSpace::ClassName::.*0ld$";

As for notregexmatch, it restricts the match only to the strings not matching the specified regular expression. So to rename all declarations to lower case except those consisting of capital
letters only:

%rename("$(lower)s", notregexmatch$name=""[A-Z]+$") "";

Finally, variants of $rename and $ignore directives can be used to help wrap C++ overloaded functions and methods or C++ methods which use default arguments. This is described in the
Renaming and ambiguity resolution section in the C++ chapter.

5.4.7.5 Ignoring everything then wrapping a few selected symbols

Using the techniques described above it is possible to ignore everything in a header and then selectively wrap a few chosen methods or classes. For example, consider a header, myheader.h
which has many classes in it and just the one class called star is wanted within this header, the following approach could be taken:

%ignore ""; // Ignore everything

// Unignore chosen class 'Star'
%rename("%s") Star;

// As the ignore everything will include the constructor, destructor, methods etc
// in the class, these have to be explicitly unignored too:

%rename("%s") Star::Star;

%rename("%s") Star::~Star;

g$rename("$s") Star::shine; // named method

%include "myheader.h"

%rename("%s") ""; // Undo the %ignore

If star was in theGalaxy namespace, you would need to unignore the namespace, too, and add the namespace to all the renames:

%rename("%s") Galaxy;
%rename("%s") Galaxy::Star;
%rename("%s") Galaxy::Star::Star;

Another approach which might be more suitable as it does not require naming all the methods in the chosen class is to begin by ignoring just the classes. This does not add an explicit ignore to
any members of the class, so when the chosen class is unignored, all of its methods will be wrapped.

%rename($ignore, %$isclass) ""; // Only ignore all classes
%rename("%s") Star; // Unignore 'Star'

%include "myheader.h"

grename("%s", %$isclass) ""; // Stop ignoring all classes

5.4.8 Default/optional arguments

SWIG supports default arguments in both C and C++ code. For example:

int plot(double x, double y, int color=WHITE);

In this case, SWIG generates wrapper code where the default arguments are optional in the target language. For example, this function could be used in Tcl as follows :

% plot -3.4

7o # Use default value
% plot -3.4 7.

5
5 10 # set color to 10 instead

Although the ISO C standard does not allow default arguments, default arguments specified in a SWIG interface work with both C and C++.

Note: There is a subtle semantic issue concerning the use of default arguments and the SWIG generated wrapper code. When default arguments are used in C code, the default values are
emitted into the wrappers and the function is invoked with a full set of arguments. This is different to when wrapping C++ where an overloaded wrapper method is generated for each defaulted

5.4 Other Practicalities

SWIG-4.2 Documentation

argument. Please refer to the section on default arguments in the C++ chapter for further details.
5.4.9 Pointers to functions and callbacks

Occasionally, a C library may include functions that expect to receive pointers to functions--possibly to serve as callbacks. SWIG provides full support for function pointers when the callback
functions are defined in C and not in the target language. For example, consider a function like this:

int binary_op(int a, int b, int (*op)(int, int));

When you first wrap something like this into an extension module, you may find the function to be impossible to use. For instance, in Python:

>>> def add(x, y):
e return x+y
>>> binary op(3, 4, add)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: Type error. Expected p f int int_ int
>>>

The reason for this error is that SWIG doesn't know how to map a scripting language function into a C callback. However, existing C functions can be used as arguments provided you install
them as constants. One way to do this is to use the $constant directive like this:

/* Function with a callback */
int binary_op(int a, int b, int (*op)(int, int));

/* Some callback functions */
%constant int add(int, int);
%constant int sub(int, int);
%constant int mul(int, int);

In this case, add, sub, and mul become function pointer constants in the target scripting language. This allows you to use them as follows:

>>> binary op(3, 4, add)
7

>>> binary op(3, 4, mul)
12

>>>

Unfortunately, by declaring the callback functions as constants, they are no longer accessible as functions. For example:

>>> add(3, 4)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object is not callable: ' ff020efc_p f int int int'
>>>

If you want to make a function available as both a callback function and a function, you can use the $callback and $nocallback directives like this:

/* Function with a callback */
int binary_op(int a, int b, int (*op)(int, int));

/* Some callback functions */
%callback("%s_cb");

int add(int, int);

int sub(int, int);

int mul(int, int);
%nocallback;

The argument to $callback is a printf-style format string that specifies the naming convention for the callback constants (%s gets replaced by the function name). The callback mode remains
in effect until it is explicitly disabled using $nocallback. When you do this, the interface now works as follows:

>>> binary op(3, 4, add_cb)
>>> binary op(3, 4, mul _cb)
>>> add(3, 4)

>>> mul(3, 4)

Notice that when the function is used as a callback, special names such as add_cb are used instead. To call the function normally, just use the original function name such as add ().

SWIG provides a number of extensions to standard C printf formatting that may be useful in this context. For instance, the following variation installs the callbacks as all upper case constants
such as ADD, SUB, and MUL:

/* Some callback functions */
%callback ("% (uppercase)s");
int add(int, int);

int sub(int, int);

int mul(int, int);
%nocallback;

A format string of "% (lowercase)s" converts all characters to lower case. A string of "% (title)s" capitalizes the first character and converts the rest to lower case.

And now, a final note about function pointer support. Although SWIG does not normally allow callback functions to be written in the target language, this can be accomplished with the use of
typemaps and other advanced SWIG features. See the Typemaps chapter for more about typemaps and individual target language chapters for more on callbacks. The 'director' feature can be
used to make callbacks from C/C++ into the target language, see Callbacks to the target language.

5.4 Other Practicalities

41

SWIG-4.2 Documentation

5.5 Structures and unions

This section describes the behavior of SWIG when processing ISO C structures and union declarations. Extensions to handle C++ are described in the next section.

ISO C has a separate tag name space in which the names of structures, unions and enumerated types are put, which is separate from the name space for ordinary identifiers (function names,
object names, typedef names, enumeration constants). For example, this is valid ISO C because Foo the struct tag and Foo the function name are in different name spaces:

struct Foo
int bar;
Yi

-~

int Foo(void) { return 42; }

SWIG doesn't currently implement this separate tag name space and for the above example you'll get:

foo.i:5: Warning 302: Redefinition of identifier 'Foo' as Foo(void) ignored,
foo.i:1: Warning 302: previous definition of 'Foo'.

In practice this rarely actually causes problems, particular because SWIG has special handling for typedef so cases such as this work:

typedef struct Foo {
int bar;
} Foo;

If SWIG encounters the definition of a structure or union, it creates a set of accessor functions. Although SWIG does not need structure definitions to build an interface, providing definitions
makes it possible to access structure members. The accessor functions generated by SWIG simply take a pointer to an object and allow access to an individual member. For example, the
declaration :

struct Vector {
double x, y, z;
Yi

gets transformed into the following set of accessor functions :

double Vector_x_get(struct Vector *obj) {
return obj->x;

}

double Vector_y_get(struct Vector *obj) {
return obj->y;

}

double Vector_z_get(struct Vector *obj) {
return obj->z;

}

void Vector_x_set(struct Vector *obj, double value) {
obj->x = value;

}

void Vector_y_set(struct Vector *obj, double value) {
obj->y = value;

}

void Vector_z_set(struct Vector *obj, double value) {
obj->z = value;

}

In addition, SWIG creates default constructor and destructor functions if none are defined in the interface. For example:

struct Vector *new_Vector() {
return (Vector *) calloc(l, sizeof(struct Vector));

void delete_Vector(struct Vector *obj) {
free(obj);
}

Using these low-level accessor functions, an object can be minimally manipulated from the target language using code like this:

v = new_Vector()

Vector_x_set(v, 2)
Vector_y_set(v, 10)
Vector_z_set(v, -5)

delete_Vector(v)

However, most of SWIG's language modules also provide a high-level interface that is more convenient. Keep reading.
5.5.1 Typedef and structures

SWIG supports the following construct which is quite common in C programs :

typedef struct {
double x, y, z;
} Vector;

When encountered, SWIG assumes that the name of the object is “Vector' and creates accessor functions like before. The only difference is that the use of typedef allows SWIG to drop the
struct keyword on its generated code. For example:

5.5 Structures and unions

SWIG-4.2 Documentation

double Vector_x_get(Vector *obj) {
return obj->x;

}

If two different names are used like this :

typedef struct vector_struct {
double x, y, z;
} Vector;

the name vector is used instead of vector_struct since this is more typical C programming style. If declarations defined later in the interface use the type struct vector_struct,
SWIG knows that this is the same as Vector and it generates the appropriate type-checking code.

5.5.2 Character strings and structures

Structures involving character strings require some care. SWIG assumes that all members of type char * have been dynamically allocated using malloc () and that they are NULL-
terminated ASCII strings. When such a member is modified, the previous contents will be released, and the new contents allocated. For example :

%module mymodule

struct Foo {
char *name;

This results in the following accessor functions :

char *Foo_name_get(Foo *obj) {
return Foo->name;

}

char *Foo_name_set(Foo *obj, char *c) {
free(obj->name);
obj->name = (char *) malloc(strlen(c)+1l);
strcpy(obj->name, c);
return obj->name;

If this behavior differs from what you need in your applications, the SWIG "memberin" typemap can be used to change it. See the typemaps chapter for further details.
Note: If the —c++ option is used, new and delete are used to perform memory allocation.
5.5.3 Array members

Arrays may appear as the members of structures, but they will be read-only. SWIG will write an accessor function that returns the pointer to the first element of the array, but will not write a
function to change the contents of the array itself. When this situation is detected, SWIG may generate a warning message such as the following :

interface.i:116. Warning. Array member will be read-only

To eliminate the warning message, typemaps can be used, but this is discussed in a later chapter. In many cases, the warning message is harmless.
5.5.4 Structure data members

Occasionally, a structure will contain data members that are themselves structures. For example:

typedef struct Foo {
int x;
} Foo;

typedef struct Bar {

int y;

Foo f; /* struct member */
} Bar;

When a structure member is wrapped, it is handled as a pointer, unless the $naturalvar directive is used where it is handled more like a C++ reference (see C++ Member data). The
accessors to the member variable as a pointer are effectively wrapped as follows:

Foo *Bar_f_get(Bar *b) {
return &b->f;

}

void Bar_f_set(Bar *b, Foo *value) {
b->f = *value;

}

The reasons for this are somewhat subtle but have to do with the problem of modifying and accessing data inside the data member. For example, suppose you wanted to modify the value o
f.x of aBar object like this:

Bar *b;
b->f.x = 37;

Translating this assignment to function calls (as would be used inside the scripting language interface) results in the following code:

Bar *b;
Foo_x_set(Bar_f_get(b), 37);

5.5 Structures and unions

SWIG-4.2 Documentation

In this code, if the Bar_f_get () function were to return aFoo instead of aFoo *, then the resulting modification would be applied to a copy of £ and not the data member £ itself. Clearly
that's not what you want!

It should be noted that this transformation to pointers only occurs if SWIG knows that a data member is a structure or class. For instance, if you had a structure like this,

struct Foo {
WORD w;
}i

Q

and nothing was known about WORD, then SWIG will generate more normal accessor functions like this:

WORD Foo_w_get(Foo *f) {
return f->w;

}

void Foo_w_set(FOO *f, WORD value) {
f->w = value;

}

If you have accessor methods that you want to use as attributes in the target language, you can make them appear as data members using attributes.i.
Compatibility Note: SWIG-1.3.11 and earlier releases transformed all non-primitive member datatypes to pointers. Starting in SWIG-1.3.12, this transformation only occurs if a datatype is
known to be a structure, class, or union. This is unlikely to break existing code. However, if you need to tell SWIG that an undeclared datatype is really a struct, simply use a forward struct
declaration such as "struct Foo;".

5.5.5 C constructors and destructors
When wrapping structures, it is generally useful to have a mechanism for creating and destroying objects. If you don't do anything, SWIG will automatically generate functions for creating and
destroying objects using malloc () and free (). Note: the use ofmalloc () only applies when SWIG is used on C code (i.e., when the-c++ option is not supplied on the command line).
C++ is handled differently.

If you don't want SWIG to generate default constructors for your interfaces, you can use the $nodefaultctor directive or the -nodefaultctor command line option. For example:

swig -nodefaultctor example.i

or

gmodule foo

%nodefaultctor; // Don't create default constructors
. declarations
%clearnodefaultctor; // Re-enable default constructors

If you need more precise control, $nodefaultctor can selectively target individual structure definitions. For example:

%nodefaultctor Foo; // No default constructor for Foo
struct Foo { // No default constructor generated.
Yi

struct Bar { // Default constructor generated.

}i

Since ignoring the implicit or default destructors most of the time produces memory leaks, SWIG will always try to generate them. If needed, however, you can selectively disable the
generation of the default/implicit destructor by using $nodefaultdtor

gnodefaultdtor Foo; // No default/implicit destructor for Foo

struct Foo { // No default destructor is generated.

}i
struct Bar { // Default destructor generated.
}i

Compatibility note: Prior to SWIG-1.3.7, SWIG did not generate default constructors or destructors unless you explicitly turned them on. However, it appears that most users want to have
constructor and destructor functions so it has now been enabled as the default behavior.

Note: There is also the $nodefault directive, which disables both the default or implicit destructor generation. This could lead to memory leaks across the target languages, and it is highly
recommended you don't use them.

5.5.6 Adding member functions to C structures

Most languages provide a mechanism for creating classes and supporting object oriented programming. From a C standpoint, object oriented programming really just boils down to the process
of attaching functions to structures. These functions normally operate on an instance of the structure (or object). Although there is a natural mapping of C++ to such a scheme, there is no
direct mechanism for utilizing it with C code. However, SWIG provides a special $extend directive that makes it possible to attach methods to C structures for purposes of building an object
oriented interface. Suppose you have a C header file with the following declaration :

/* file : vector.h */

typedef struct Vector {
double x, y, z;
} Vector;

You can make a Vector look a lot like a class by writing a SWIG interface like this:

// file : vector.i
$module mymodule

3{

#include "vector.h"

5.5 Structures and unions

SWIG-4.2 Documentation

%}
%include "vector.h" // Just grab original C header file
%extend Vector { // Attach these functions to struct Vector

Vector (double x, double y, double z) {
Vector *v;
v = (Vector *) malloc(sizeof(Vector));
vV->X = X;
v->y =Y;
v->z = z;
return v;
}
~Vector() {
free($self);
}
double magnitude() {
return sqrt($self->x*$self->x+$self->y*$self->y+$self->z*$self->z);
}
void print() {
printf("Vector [%g, %g, %g]\n", $self->x, $self->y, $self->z);
}
}i

Note the usage of the $sel£ special variable. Its usage is identical to a C++ 'this' pointer and should be used whenever access to the struct instance is required. Also note that C++
constructor and destructor syntax has been used to simulate a constructor and destructor, even for C code. There is one subtle difference to a normal C++ constructor implementation though
and that is although the constructor declaration is as per a normal C++ constructor, the newly constructed object must be returned as if the constructor declaration had a return value, a
Vector * in this case.

Now, when used with proxy classes in Python, you can do things like this :

>>> v = Vector(3, 4, 0) # Create a new vector
>>> print v.magnitude() # Print magnitude

5.0

>>> y.print() # Print it out

[3,4,0]

>>> del v # Destroy it

The %extend directive can also be used inside the definition of the Vector structure. For example:

// file : vector.i
$module mymodule

3{

#include "vector.h"
%}

typedef struct Vector {
double x, y, z;
%extend {
Vector (double x, double y, double z) { ... }
~Vector() { ... }
}
} Vector;

Note that $extend can be used to access externally written functions provided they follow the naming convention used in this example :

/* File : vector.c */
/* Vector methods */
#include "vector.h"
Vector *new_Vector(double x, double y, double z) {
Vector *v;
v = (Vector *) malloc(sizeof(Vector));
vV->X = X;
v->y = y;
v->z = z;
return v;

void delete_Vector(Vector *v) {
free(v);

}

double Vector_magnitude(Vector *v) {
return sqrt(v->xX*v->x+v->y*v->y+v->z*v->z);

}

// File : vector.i
// Interface file
$module mymodule

3{

#include "vector.h"
%}

typedef struct Vector {
double x, y, z;

%extend {
Vector(int, int, int); // This calls new_Vector()
~Vector(); // This calls delete Vector()

double magnitude(); // This will call Vector_magnitude()

}
} Vector;

You'll also need to use these names if you want to directly call methods added using $extend from other C/C++ code.

The name used for %extend should be the name of the struct and not the name of any typedef to the struct. For example:

5.5 Structures and unions

SWIG-4.2 Documentation

typedef struct Integer {
int value;

b aoeeg
%extend Integer { ... } /* Correct name */
%extend Int { ... } /* Incorrect name */

struct Float {
float value;

Yi
typedef struct Float FloatValue;
%extend Float { ... } /* Correct name */

%extend FloatValue { ... } /* Incorrect name */

There is one exception to this rule and that is when the struct is anonymously named such as:

typedef struct {
double value;
} Double;
gextend Double { ... } /* Okay */

A little known feature of the $extend directive is that it can also be used to add synthesized attributes or to modify the behavior of existing data attributes. For example, suppose you wanted

to make magnitude a read-only attribute of Vector instead of a method. To do this, you might write some code like this:

// Add a new attribute to Vector
%extend Vector {

const double magnitude;
}
// Now supply the implementation of the Vector_ magnitude get function
3{
const double Vector magnitude get(Vector *v) {

return (const double) sqrt(v->x*v->x+v->y*v->y+v->z*v->z);
}
%}

Now, for all practical purposes, magnitude will appear like an attribute of the object.

A similar technique can also be used to work with data members that you want to process. For example, consider this interface:

typedef struct Person {
char name[50];

} Person;

Say you wanted to ensure name was always upper case, you can rewrite the interface as follows to ensure this occurs whenever a name is read or written to:

typedef struct Person {
%extend {
char name[50];

}

} Person;

3{
#include <string.h>
#include <ctype.h>

void make_upper(char *name) {
char *c;
for (c = name; *c; ++c)
*c = (char)toupper((int)*c);

}
/* Specific implementation of set/get functions forcing capitalization */

char *Person_name_get(Person *p) {
make_upper (p->name) ;
return p->name;

}

void Person_name_set(Person *p, char *val) {
strncpy(p->name, val, 50);
make_upper (p->name) ;
}
%}

Finally, it should be stressed that even though %extend can be used to add new data members, these new members can not require the allocation of additional storage in the object (e.g.,

their values must be entirely synthesized from existing attributes of the structure or obtained elsewhere).
5.5.7 Nested structures

Occasionally, a C program will involve structures like this :

typedef struct Object {
int objtype;
union {
int ivalue;
double dvalue;
char *strvalue;
void *ptrvalue;
} intRep;
} Object;

5.5 Structures and unions

46

SWIG-4.2 Documentation

When SWIG encounters this, it performs a structure splitting operation that transforms the declaration into the equivalent of the following:

typedef union {
int ivalue;
double dvalue;
char *strvalue;
void *ptrvalue;

} Object_intRep;

typedef struct Object {
int objType;
Object_intRep intRep;
} Object;

SWIG will then create an Object_intRep structure for use inside the interface file. Accessor functions will be created for both structures. In this case, functions like this would be created :

Object_intRep *Object_intRep_get(Object *o) {
return (Object_intRep *) &o->intRep;

}

int Object_intRep_ivalue_get(Object_intRep *o) {
return o->ivalue;

}

int Object_intRep_ivalue_set(Object_intRep *o, int value) {
return (o->ivalue = value);

}

double Object_intRep_dvalue get(Object_intRep *o) {
return o->dvalue;

}

«e. €tCc ...

Although this process is a little hairy, it works like you would expect in the target scripting language--especially when proxy classes are used. For instance, in Perl:

Perl5 script for accessing nested member
$o = CreateObject(); # Create an object somehow
$o->{intRep}->{ivalue} = 7 # Change value of o.intRep.ivalue

If you have a lot of nested structure declarations, it is advisable to double-check them after running SWIG. Although, there is a good chance that they will work, you may have to modify the
interface file in certain cases.

Finally, note that nesting is handled differently in C++ mode, see Nested classes.
5.5.8 Other things to note about structure wrapping

SWIG doesn't care if the declaration of a structure in a . i file exactly matches that used in the underlying C code (except in the case of nested structures). For this reason, there are no
problems omitting problematic members or simply omitting the structure definition altogether. If you are happy passing pointers around, this can be done without ever giving SWIG a structure
definition.

Starting with SWIG1.3, a number of improvements have been made to SWIG's code generator. Specifically, even though structure access has been described in terms of high-level accessor
functions such as this,

double Vector_x get(Vector *v) {
return v->x;

}

most of the generated code is actually inlined directly into wrapper functions. Therefore, no function vector_x_get () actually exists in the generated wrapper file. For example, when
creating a Tcl module, the following function is generated instead:

static int
_wrap_Vector_x get(ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]) {
struct Vector *argl ;
double result ;

if (SWIG_GetArgs(interp, objc, objv, "p:Vector_x get self ", &arg0,
SWIGTYPE_p_ Vector) == TCL_ERROR)
return TCL_ERROR;
result = (double) (argl->x);
Tcl_SetObjResult(interp, Tcl NewDoubleObj((double) result));
return TCL_OK;

The only exception to this rule are methods defined with $extend . In this case, the added code is contained in a separate function.

Finally, it is important to note that most language modules may choose to build a more advanced interface. Although you may never use the low-level interface described here, most of SWIG's
language modules use it in some way or another.

5.6 Code Insertion

Sometimes it is necessary to insert special code into the resulting wrapper file generated by SWIG. For example, you may want to include additional C code to perform initialization or other
operations. There are four common ways to insert code, but it's useful to know how the output of SWIG is structured first.

5.6.1 The output of SWIG
When SWIG creates its output C/C++ file, it is broken up into five sections corresponding to runtime code, headers, wrapper functions, and module initialization code (in that order).
« Begin section.

A placeholder for users to put code at the beginning of the C/C++ wrapper file. This is most often used to define preprocessor macros that are used in later sections.
« Runtime code.

5.6 Code Insertion 47

SWIG-4.2 Documentation

This code is internal to SWIG and is used to include type-checking and other support functions that are used by the rest of the module.
« Header section.

This is user-defined support code that has been included by the ¢ { ... %} directive. Usually this consists of header files and other helper functions.
« Wrapper code.

These are the wrappers generated automatically by SWIG.
« Module initialization.

The function generated by SWIG to initialize the module upon loading.

5.6.2 Code insertion blocks

The 2insert directive enables inserting blocks of code into a given section of the generated code. It can be used in one of two ways:

%insert("section") "filename"
%insert("section") %{ ... %}

The first will dump the contents of the file in the given filename into the named section. The second inserts the code between the braces into the named section. For example, the
following adds code into the runtime section:

%insert("runtime") %{
. code in runtime section ...
%}

There are the 5 sections, however, some target languages add in additional sections and some of these result in code being generated into a target language file instead of the C/C++ wrapper

file. These are documented when available in the target language chapters. Macros named after the code sections are available as additional directives and these macro directives are

normally used instead of $insert . For example, $runtime is used instead of $insert ("runtime"). The valid sections and order of the sections in the generated C/C++ wrapper file is as

shown:
%begin %{
. code in begin section ...
%}

gruntime %{
. code in runtime section ...

%}
%header %{

. code in header section ...
%}

Iwrapper %{
. code in wrapper section ...

%}
%init %{

. code in init section ...
%}

The bare ${ ... %} directive is a shortcut that is the same as $header %{ ... %}.

The $begin section is effectively empty as it just contains the SWIG banner by default. This section is provided as a way for users to insert code at the top of the wrapper file before any other
code is generated. Everything in a code insertion block is copied verbatim into the output file and is not parsed by SWIG. Most SWIG input files have at least one such block to include header

files and support C code. Additional code blocks may be placed anywhere in a SWIG file as needed.

$module mymodule

%4
#include "my_header.h"
%}
. Declare functions here
%{

void some_extra_function() {

}
%}

A common use for code blocks is to write "helper” functions. These are functions that are used specifically for the purpose of building an interface, but which are generally not visible to the

normal C program. For example :

%4
/* Create a new vector */
static Vector *new_Vector() {
return (Vector *) malloc(sizeof(Vector));

}

%}
// Now wrap it
Vector *new_Vector();

5.6.3 Inlined code blocks

Since the process of writing helper functions is fairly common, there is a special inlined form of code block that is used as follows :

%inline %{
/* Create a new vector */
Vector *new_Vector() ({

return (Vector *) malloc(sizeof(Vector));
}
%}

This is the same as writing:

5.6 Code Insertion

48

SWIG-4.2 Documentation

3{
/* Create a new vector */
Vector *new_Vector() {

return (Vector *) malloc(sizeof(Vector));
}
%}

/* Create a new vector */
Vector *new Vector() {
return (Vector *) malloc(sizeof(Vector));

}

In other words, the $inline directive inserts all of the code that follows verbatim into the header portion of an interface file. The code is then parsed by both the SWIG preprocessor and
parser. Thus, the above example creates a new command new_Vector using only one declaration. Since the code inside an $inline %{ ... %} block is given to both the C compiler and
SWIG, it is illegal to include any SWIG directives inside a ${ ... %} block.

Note: The usual SWIG C preprocessor rules apply to code insapply blocks when SWIG parses this code. For example, as mentioned earlier, SWIG's C Preprocessor does not follow
#include directives by default.

5.6.4 Initialization blocks

When code is included in the $init section, it is copied directly into the module initialization function. For example, if you needed to perform some extra initialization on module loading, you
could write this:

%init %¢{
init_variables();

%}

Please note that some language backends (e.g. C# or Java) don't have any initialization function, hence you should define a global object performing the necessary initialization for them
instead:

%init %{
static struct MyInit { MyInit() { init_variables(); } } myInit;
%}

5.7 An Interface Building Strategy

This section describes the general approach for building interfaces with SWIG. The specifics related to a particular scripting language are found in later chapters.
5.7.1 Preparing a C program for SWIG

SWIG doesn't require modifications to your C code, but if you feed it a collection of raw C header files or source code, the results might not be what you expect---in fact, they might be awful.
Here's a series of steps you can follow to make an interface for a C program :

Identify the functions that you want to wrap. It's probably not necessary to access every single function of a C program--thus, a little forethought can dramatically simplify the resulting
scripting language interface. C header files are a particularly good source for finding things to wrap.

Create a new interface file to describe the scripting language interface to your program.

Copy the appropriate declarations into the interface file or use SWIG's $include directive to process an entire C source/header file.

Make sure everything in the interface file uses ISO C/C++ syntax.

Make sure all necessary ‘typedef' declarations and type-information is available in the interface file. In particular, ensure that the type information is specified in the correct order as
required by a C/C++ compiler. Most importantly, define a type before it is used! A C compiler will tell you if the full type information is not available if it is needed, whereas SWIG will
usually not warn or error out as it is designed to work without full type information. However, if type information is not specified correctly, the wrappers can be sub-optimal and even result
in uncompilable C/C++ code.

« If your program has a main() function, you may need to rename it (read on).

« Run SWIG and compile.

Although this may sound complicated, the process turns out to be fairly easy once you get the hang of it.

In the process of building an interface, SWIG may encounter syntax errors or other problems. The best way to deal with this is to simply copy the offending code into a separate interface file
and edit it. However, the SWIG developers have worked very hard to improve the SWIG parser--you should report parsing errors to the swig-devel mailing list or to the SWIG bug tracker.

5.7.2 The SWIG interface file

The preferred method of using SWIG is to generate a separate interface file. Suppose you have the following C header file :

/* File : header.h */

#include <stdio.h>
#include <math.h>

extern int foo(double);
extern double bar(int, int);
extern void dump(FILE *f);

A typical SWIG interface file for this header file would look like the following :

/* File : interface.i */
$module mymodule

%4

#include "header.h"

%}

extern int foo(double);
extern double bar(int, int);
extern void dump(FILE *f);

Of course, in this case, our header file is pretty simple so we could use a simpler approach and use an interface file like this:

/* File : interface.i */
gmodule mymodule
%{

5.7 An Interface Building Strategy

49

https://www.swig.org/mail.html
https://www.swig.org/bugs.html

SWIG-4.2 Documentation

#include "header.h"
%}

%include "header.h"

The main advantage of this approach is minimal maintenance of an interface file for when the header file changes in the future. In more complex projects, an interface file containing numerous
$include and #include statements like this is one of the most common approaches to interface file design due to lower maintenance overhead.

5.7.3 Why use separate interface files?

Although SWIG can parse many header files, it is more common to write a special . i file defining the interface to a package. There are several reasons why you might want to do this:

It is rarely necessary to access every single function in a large package. Many C functions might have little or no use in a scripted environment. Therefore, why wrap them?
Separate interface files provide an opportunity to provide more precise rules about how an interface is to be constructed.

Interface files can provide more structure and organization.

SWIG can't parse certain definitions that appear in header files. Having a separate file allows you to eliminate or work around these problems.

Interface files provide a more precise definition of what the interface is. Users wanting to extend the system can go to the interface file and immediately see what is available without
having to dig it out of header files.

5.7.4 Getting the right header files

Sometimes, it is necessary to use certain header files in order for the code generated by SWIG to compile properly. Make sure you include certain header files by using a ${ %} block like this:

gmodule graphics

3{

#include <GL/gl.h>
#include <GL/glu.h>
%}

// Put the rest of the declarations here

5.7.5 What to do with main()

If your program defines amain () function, you may need to get rid of it or rename it in order to use a scripting language. Most scripting languages define their own main () procedure that is
called instead. main () also makes no sense when working with dynamic loading. There are a few approaches to solving the main () conflict :

o Getrid ofmain() entirely.
« Renamemain() to something else. You can do this by compiling your C program with an option like ~-Dmain=oldmain.
« Use conditional compilation to only includemain () when not using a scripting language.

Getting rid of main () may cause potential initialization problems of a program. To handle this problem, you may consider writing a special function called program init () that initializes
your program upon startup. This function could then be called either from the scripting language as the first operation, or when the SWIG generated module is loaded.

As a general note, many C programs only use the main () function to parse command line options and to set parameters. However, by using a scripting language, you are probably trying to
create a program that is more interactive. In many cases, the old main () program can be completely replaced by a Perl, Python, or Tcl script.

Note: In some cases, you might be inclined to create a scripting language wrapper formain (). If you do this, the compilation will probably work and your module might even load correctly.
The only trouble is that when you call your main () wrapper, you will find that it actually invokes the main () of the scripting language interpreter itself! This behavior is a side effect of the
symbol binding mechanism used in the dynamic linker. The bottom line: don't do this.

6 SWIG and C++

Comments on C++ Wrapping
Approach
Supported C++ features
Command line options and compilation
Proxy classes
o Construction of proxy classes
o Resource management in proxies
o Language specific details
Simple C++ wrapping
Constructors and destructors
Default constructors, copy constructors and implicit destructors
When constructor wrappers aren't created
Copy constructors
Member functions
Static members
Member data
Protection
Enums and constants
Friends
o Friend classes
o Friend function definitions
o Friend function declarations
o Unqualified friend functions
References and pointers
Pass and return by value
Inheritance
A brief discussion of multiple inheritance, pointers. and type checking
Default arguments
Overloaded functions and methods
o Dispatch function generation
o Ambiguity in overloading
o Renaming and ambiguity resolution
o Comments on overloading
Overloaded operators
Class extension
o Replacing class methods
Templates
The %template directive
Function templates
Default template arguments
Template base classes
Empty template instantiation
Template specialization
Member templates

°

°

o

°

°

°

°

o

°

°

o

°

°

o

5.7 An Interface Building Strategy

SWIG-4.2 Documentation

o Scoping and templates

o More on templates
Namespaces

o The nspace feature for namespaces
Renaming templated types in namespaces
Exception specifications
Exception handling with %catches
Pointers to Members
Smart pointers and operator->()
C++ reference counted objects - ref/unref feature
Using declarations and inheritance
Nested classes
A brief rant about const-correctness
Callbacks to the target language

o Introduction to director classes

o Using directors and target language callbacks
Where to go for more information

This chapter describes SWIG's support for wrapping C++. It is mostly concerned about C++ as defined by the C++ 98 and 03 standards. For additions to the original C++ standard, please read
the SWIG and C++11, SWIG and C++14, SWIG and C++17 and SWIG and C++20 chapters. As a prerequisite, you should first read the chapter SWIG Basics to see how SWIG wraps ISO C.
Support for C++ builds upon ISO C wrapping and that material will be useful in understanding this chapter.

6.1 Comments on C++ Wrapping

Because of its complexity and the fact that C++ can be difficult to integrate with itself let alone other languages, SWIG only provides support for a subset of C++ features. Fortunately, this is
now a rather large subset.

In part, the problem with C++ wrapping is that there is no semantically obvious (or automatic) way to map many of its advanced features into other languages. As a simple example, consider
the problem of wrapping C++ multiple inheritance to a target language with no such support. Similarly, the use of overloaded operators and overloaded functions can be problematic when no
such capability exists in a target language.

A more subtle issue with C++ has to do with the way that some C++ programmers think about programming libraries. In the world of SWIG, you are really trying to create binary-level software
components for use in other languages. In order for this to work, a "component" has to contain real executable instructions and there has to be some kind of binary linking mechanism for
accessing its functionality. In contrast, C++ has increasingly relied upon generic programming and templates for much of its functionality. Although templates are a powerful feature, they are
largely orthogonal to the whole notion of binary components and libraries. For example, an STL vector does not define any kind of binary object for which SWIG can just create a wrapper. To
further complicate matters, these libraries often utilize a lot of behind the scenes magic in which the semantics of seemingly basic operations (e.g., pointer dereferencing, procedure call, etc.)
can be changed in dramatic and sometimes non-obvious ways. Although this "magic" may present few problems in a C++-only universe, it greatly complicates the problem of crossing language
boundaries and provides many opportunities to shoot yourself in the foot. You will just have to be careful.

6.2 Approach

To wrap C++, SWIG uses a layered approach to code generation. At the lowest level, SWIG generates a collection of procedural ISO C style wrappers. These wrappers take care of basic type
conversion, type checking, error handling, and other low-level details of the C++ binding. These wrappers are also sufficient to bind C++ into any target language that supports built-in
procedures. In some sense, you might view this layer of wrapping as providing a C library interface to C++. On top of the low-level procedural (flattened) interface, SWIG generates proxy
classes that provide a natural object-oriented (OO) interface to the underlying code. The proxy classes are typically written in the target language itself. For instance, in Python, a real Python
class is used to provide a wrapper around the underlying C++ object.

It is important to emphasize that SWIG takes a deliberately conservative and non-intrusive approach to C++ wrapping. SWIG does not encapsulate C++ classes inside a special C++ adaptor, it
does not rely upon templates, nor does it add in additional C++ inheritance when generating wrappers. The last thing that most C++ programs need is even more compiler magic. Therefore,
SWIG tries to maintain a very strict and clean separation between the implementation of your C++ application and the resulting wrapper code. You might say that SWIG has been written to
follow the principle of least surprise--it does not play sneaky tricks with the C++ type system, it doesn't mess with your class hierarchies, and it doesn't introduce new semantics. Although this
approach might not provide the most seamless integration with C++, it is safe, simple, portable, and debuggable.

Some of this chapter focuses on the low-level procedural interface to C++ that is used as the foundation for all language modules. Keep in mind that the target languages also provide the high-
level OO interface via proxy classes. More detailed coverage can be found in the documentation for each target language.

6.3 Supported C++ features

SWIG currently supports most C++ features including the following:

Classes

Constructors and destructors

Virtual functions

Public inheritance (including multiple inheritance)
Static functions

Function and method overloading

Operator overloading for many standard operators
References

Templates (including specialization and member templates)
Pointers to members

Namespaces

Default parameters

Smart pointers

The following C++ features are not currently supported:
« Overloaded versions of certain operators (new, delete, etc.)
As a rule of thumb, SWIG should not be used on raw C++ source files, use header files only.

SWIG's C++ support is an ongoing project so some of these limitations may be lifted in future releases. However, we make no promises. Also, submitting a bug report is a very good way to get
problems fixed (wink).

6.4 Command line options and compilation

When wrapping C++ code, it is critical that SWIG be called with the “-c++' option. This changes the way a number of critical features such as memory management are handled. It also
enables the recognition of C++ keywords. Without the —c++ flag, SWIG will either issue a warning or a large number of syntax errors if it encounters C++ code in an interface file.

When compiling and linking the resulting wrapper file, it is normal to use the C++ compiler. For example:

$ swig -c++ -tcl example.i
$ c++ -fPIC -c example wrap.cxx
$ c++ example wrap.o $(OBJS) -o example.so

Unfortunately, the process varies slightly on each platform. Make sure you refer to the documentation on each target language for further details. The SWIG Wiki also has further details.

Compatibility Note: Early versions of SWIG generated just a flattened low-level C style API to C++ classes by default. The —-noproxy commandline option is recognised by some target languages and

6.1 Comments on C++ Wrapping 51

SWIG-4.2 Documentation

will generate just this interface as in earlier versions.
6.5 Proxy classes

In order to provide a natural mapping from C++ classes to the target language classes, SWIG's target languages mostly wrap C++ classes with special proxy classes. These proxy classes are
typically implemented in the target language itself. For example, if you're building a Python module, each C++ class is wrapped by a Python proxy class. Or if you're building a Java module,
each C++ class is wrapped by a Java proxy class.

6.5.1 Construction of proxy classes

Proxy classes are always constructed as an extra layer of wrapping that uses low-level accessor functions. To illustrate, suppose you had a C++ class like this:

class Foo {
public:
Foo();
~Foo();
int bar(int x);
int x;
b

Using C++ as pseudocode, a proxy class looks something like this:

class FooProxy {
private:
Foo *self;
public:

FooProxy() {
self = new Foo();

}

~FooProxy() {
delete_Foo(self);

}

int bar(int x) {
return Foo_bar(self, x);

}

int x_get() {
return Foo_x get(self);

}

void x_set(int x) {
Foo_x_set(self, x);

}

Yi

Of course, always keep in mind that the real proxy class is written in the target language. For example, in Python, the proxy might look roughly like this:

class Foo:
def _ init_(self):
self.this = new_Foo()
def _ del (self):
delete_Foo(self.this)
def bar(self, x):
return Foo_bar(self.this, x)
def _ getattr (self, name):
if name == 'x':
return Foo_x_get(self.this)

def _ setattr (self, name, value):
if name == 'x':
Foo_x_set(self.this, value)

Again, it's important to emphasize that the low-level accessor functions are always used by the proxy classes. Whenever possible, proxies try to take advantage of language features that are
similar to C++. This might include operator overloading, exception handling, and other features.

6.5.2 Resource management in proxies

A major issue with proxies concerns the memory management of wrapped objects. Consider the following C++ code:

class Foo {
public:
Foo();
~Foo();
int bar(int x);
int x;
Yi
class Spam {

public:
Foo *value;

}i

Consider some script code that uses these classes:

f = Foo() # Creates a new Foo

s = Spam() # Creates a new Spam

s.value = f # Stores a reference to f inside s
g = s.value # Returns stored reference

g =4 # Reassign g to some other value
del f # Destroy f

Now, ponder the resulting memory management issues. When objects are created in the script, the objects are wrapped by newly created proxy classes. That is, there is both a new proxy

6.5 Proxy classes

SWIG-4.2 Documentation

class instance and a new instance of the underlying C++ class. In this example, both £ and s are created in this way. However, the statements . value is rather curious---when executed, a
pointer to £ is stored inside another object. This means that the scripting proxy class AND another C++ class share a reference to the same object. To make matters even more interesting,
consider the statement g = s.value. When executed, this creates a new proxy classg that provides a wrapper around the C++ object stored in s.value . In general, there is no way to

know where this object came from---it could have been created by the script, but it could also have been generated internally. In this particular example, the assignment of g results in a second

proxy class for £. In other words, a reference to £ is now shared by two proxy classesanda C++ class.

Finally, consider what happens when objects are destroyed. In the statement, g=4, the variable g is reassigned. In many languages, this makes the old value of g available for garbage
collection. Therefore, this causes one of the proxy classes to be destroyed. Later on, the statement del £ destroys the other proxy class. Of course, there is still a reference to the original
object stored inside another C++ object. What happens to it? Is the object still valid?

To deal with memory management problems, proxy classes provide an API for controlling ownership. In C++ pseudocode, ownership control might look roughly like this:

class FooProxy {

public:
Foo *self;
int thisown;

FooProxy() {
self = new Foo();
thisown = 1; // Newly created object
}
~FooProxy() {
if (thisown) delete Foo(self);
}
// Ownership control API
void disown() {
thisown = 0;
}
void acquire() {
thisown = 1;
}
}i

class FooPtrProxy: public FooProxy {
public:
FooPtrProxy(Foo *s) {
self = s;
thisown = 0;
}
b

class SpamProxy {

FooProxy *value get() {
return FooPtrProxy(Spam value get(self));

}

void value_set(FooProxy *v) {
Spam_value_set(self, v->self);
v->disown();

}

}i

Looking at this code, there are a few central features:
« Each proxy class keeps an extra flag to indicate ownership. C++ objects are only destroyed if the ownership flag is set.
« When new objects are created in the target language, the ownership flag is set.
« When a reference to an internal C++ object is returned, it is wrapped by a proxy class, but the proxy class does not have ownership.
« In certain cases, ownership is adjusted. For instance, when a value is assigned to the member of a class, ownership is lost.
« Manual ownership control is provided by specialdisown () and acquire () methods.

Given the tricky nature of C++ memory management, it is impossible for proxy classes to automatically handle every possible memory management problem. However, proxies do provide a
mechanism for manual control that can be used (if necessary) to address some of the more tricky memory management problems.

6.5.3 Language specific details
Language specific details on proxy classes are contained in the chapters describing each target language. This chapter has merely introduced the topic in a very general way.

6.6 Simple C++ wrapping

The following code shows a SWIG interface file for a simple C++ class.

gmodule list

3{

#include "list.h"
%}

// Very simple C++ example for linked list

class List {
public:
List();
~List();
int search(char *value);
void insert(char *);
void remove(char *);
char *get(int n);
int 1length;
static void print(List *1);
Yi

To generate wrappers for this class, SWIG first reduces the class to a collection of low-level C-style accessor functions which are then used by the proxy classes.
6.6.1 Constructors and destructors

C++ constructors and destructors are translated into accessor functions such as the following :

6.6 Simple C++ wrapping

53

SWIG-4.2 Documentation

List * new List(void) {
return new List;

}

void delete List(List *1) {
delete 1;

}

6.6.2 Default constructors, copy constructors and implicit destructors

Following the C++ rules for implicit constructor and destructors, SWIG will automatically assume there is one even when they are not explicitly declared in the class interface.

In general then:

« If a C++ class does not declare any explicit constructor, SWIG will automatically generate a wrapper for one.
« If a C++ class does not declare an explicit copy constructor, SWIG will automatically generate a wrapper for one if $copyctor is used.
« If a C++ class does not declare an explicit destructor, SWIG will automatically generate a wrapper for one.

And as in C++, a few rules that alters the previous behavior:

« A default constructor is not created if a class already defines a constructor with arguments.

« Default constructors are not generated for classes with pure virtual methods or for classes that inherit from an abstract class, but don't provide definitions for all of the pure methods.
« A default constructor is not created unless all base classes support a default constructor.

« Default constructors and implicit destructors are not created if a class defines them in a private or protected section.

« Default constructors and implicit destructors are not created if any base class defines a non-public default constructor or destructor.

SWIG should never generate a default constructor, copy constructor or default destructor wrapper for a class in which it is illegal to do so. In some cases, however, it could be necessary (if the

complete class declaration is not visible from SWIG, and one of the above rules is violated) or desired (to reduce the size of the final interface) by manually disabling the implicit
constructor/destructor generation.

To manually disable these, the $nodefaultctor and $nodefaultdtor feature flag directives can be used. Note that these directives only affects the implicit generation, and they have no
effect if the default/copy constructors or destructor are explicitly declared in the class interface.

For example:

gnodefaultctor Foo; // Disable the default constructor for class Foo.

class Foo { // No default constructor is generated, unless one is declared
}i

class Bar { // A default constructor is generated, if possible

Yi

The directive $nodefaultctor can also be applied "globally”, as in:

gnodefaultctor; // Disable creation of default constructors

class Foo { // No default constructor is generated, unless one is declared
Fi
class Bar {
public:

Bar(); // The default constructor is generated, since one is declared
Yi

%clearnodefaultctor; // Enable the creation of default constructors again

The corresponding $nodefaultdtor directive can be used to disable the generation of the default or implicit destructor, if needed. Be aware, however, that this could lead to memory leaks in
the target language. Hence, it is recommended to use this directive only in well known cases. For example:

gnodefaultdtor Foo; // Disable the implicit/default destructor for class Foo.
class Foo { // No destructor is generated, unless one is declared
}i

Compatibility Note: The generation of default constructors/implicit destructors was made the default behavior in SWIG 1.3.7. This may break certain older modules, but the old behavior can
be easily restored using $nodefault. Furthermore, in order for SWIG to properly generate (or not generate) default constructors, it must be able to gather information from both the private
and protected sections (specifically, it needs to know if a private or protected constructor/destructor is defined). In older versions of SWIG, it was fairly common to simply remove or
comment out the private and protected sections of a class due to parser limitations. However, this removal may now cause SWIG to erroneously generate constructors for classes that define a
constructor in those sections. Consider restoring those sections in the interface or using $nodefault to fix the problem.

Note: The $nodefault directive described above, which disables both the default constructor and the implicit destructors, could lead to memory leaks, and so it is strongly recommended to
not use it.

6.6.3 When constructor wrappers aren't created

If a class defines a constructor, SWIG normally tries to generate a wrapper for it. However, SWIG will not generate a constructor wrapper if it thinks that it will result in illegal wrapper code.
There are really two cases where this might show up.

First, SWIG won't generate wrappers for protected or private constructors. For example:

class Foo {
protected:

Foo(); // Not wrapped.
public:

Next, SWIG won't generate wrappers for a class if it appears to be abstract--that is, it has undefined pure virtual methods. Here are some examples:

class Bar {

public:
Bar(); // Not wrapped. Bar is abstract.
virtual void spam(void) = 0;

}i

6.6 Simple C++ wrapping

54

SWIG-4.2 Documentation

class Grok : public Bar {
public:

Grok(); // Not wrapped. No implementation of abstract spam().
}i

Some users are surprised (or confused) to find missing constructor wrappers in their interfaces. In almost all cases, this is caused when classes are determined to be abstract. To see if this is
the case, run SWIG with all of its warnings turned on:

% swig -Wall -python module.i

In this mode, SWIG will issue a warning for all abstract classes. It is possible to force a class to be non-abstract using this:

%feature("notabstract") Foo;

class Foo : public Bar {
public:
Foo(); // Generated no matter what---not abstract.

More information about $feature can be found in the Customization features chapter.
6.6.4 Copy constructors

If a class defines more than one constructor, its behavior depends on the capabilities of the target language. If overloading is supported, the copy constructor is accessible using the normal
constructor function. For example, if you have this:

class List {
public:
List();
List(const List &); // Copy constructor

then the copy constructor can be used as follows:

X = List() # Create a list
y = List(x) # Copy list x

If the target language does not support overloading, then the copy constructor is available through a special function like this:

List *copy_ List(List *f) {
return new List(*f);

}

Note: For a class X, SWIG only treats a constructor as a copy constructor if it can be applied to an object of type X or X *. If more than one copy constructor is defined, only the first definition
that appears is used as the copy constructor--other definitions will result in a name-clash. Constructors such as X (const X &),X(X &),andX(X *) are handled as copy constructors in
SWIG.

Note: SWIG does not generate a copy constructor wrapper unless one is explicitly declared in the class. This differs from the treatment of default constructors and destructors. However, copy
constructor wrappers can be generated if using the copyctor feature flag. For example:

%copyctor List;

class List {

public:
List();

b

Will generate a copy constructor wrapper for List.

Compatibility note: Special support for copy constructors was not added until SWIG-1.3.12. In previous versions, copy constructors could be wrapped, but they had to be renamed. For
example:

%rename (CopyFoo) Foo::Foo(const Foo &);

class Foo {
public:
Foo();
Foo(const Foo &);

For backwards compatibility, SWIG does not perform any special copy-constructor handling if the constructor has been manually renamed. For instance, in the above example, the name of the
constructor is set to new_CopyFoo (). This is the same as in older versions.

6.6.5 Member functions

All member functions are roughly translated into accessor functions like this :

int List_search(List *obj, char *value) {
return obj->search(value);

}

This translation is the same even if the member function has been declared as virtual.

6.6 Simple C++ wrapping 55

SWIG-4.2 Documentation

It should be noted that SWIG does not actually create a C accessor function in the code it generates. Instead, member access such as obj->search(value) is directly inlined into the
generated wrapper functions. However, the name and calling convention of the low-level procedural wrappers match the accessor function prototype described above.

6.6.6 Static members

Static member functions are called directly without making any special transformations. For example, the static member function print (List *1) directly invokes List::print(List *1)
in the generated wrapper code.

6.6.7 Member data

Member data is handled in exactly the same manner as for C structures. A pair of accessor functions are effectively created. For example :

int List_length get(List *obj) {
return obj->length;

}

int List_length set(List *obj, int value) {
obj->length = value;
return value;

A read-only member can be created using the $immutable and $mutable feature flag directive. For example, we probably wouldn't want the user to change the length of a list so we could
do the following to make the value available, but read-only.

class List {
public:
%immutable;
int length;
fmutable;

Alternatively, you can specify an immutable member in advance like this:

%immutable List::length;
class List {

int length; // Immutable by above directive

Similarly, all data attributes declared as const are wrapped as read-only members.

By default, SWIG uses the const reference typemaps for members that are primitive types. There are some subtle issues when wrapping data members that are not primitive types, such as
classes. For instance, if you had another class like this,

class Foo {
public:
List items;

then the low-level accessor to the items member actually uses pointers. For example:

List *Foo_items_get(Foo *self) {
return &self->items;

}

void Foo_items_set(Foo *self, List *value) {
self->items = *value;

}

More information about this can be found in the SWIG Basics chapter, Structure data members section.

The wrapper code to generate the accessors for classes comes from the pointer typemaps. This can be somewhat unnatural for some types. For example, a user would expect the STL
std::string class member variables to be wrapped as a string in the target language, rather than a pointer to this class. The const reference typemaps offer this type of marshalling, so there is a
feature to tell SWIG to use the const reference typemaps rather than the pointer typemaps. It is the naturalvar feature and can be used to effectively change the way accessors are generated
to the following:

const List &Foo_items_get(Foo *self) {
return self->items;

}

void Foo_items_set(Foo *self, const List &value) {
self->items = value;

}

The gnaturalvar directive is a macro for, and hence equivalent to, $feature("naturalvar"). It can be used as follows:

// All List variables will use const List& typemaps
%naturalvar List;

// Only Foo::myList will use const List& typemaps
gnaturalvar Foo::myList;
struct Foo {
List myList;
}i

// All non-primitive types will use const reference typemaps
%naturalvar;

6.6 Simple C++ wrapping

SWIG-4.2 Documentation

The observant reader will notice that $naturalvar works like any other feature flag directive but with some extra flexibility. The first of the example usages above shows $naturalvar
attaching to the myList 's variable type, that is the List class. The second usage shows 2naturalvar attaching to the variable name. Hence the naturalvar feature can be used on either
the variable's name or type. Note that using the naturalvar feature on a variable's name overrides any naturalvar feature attached to the variable's type.

It is generally a good idea to use this feature globally as the reference typemaps have extra NULL checking compared to the pointer typemaps. A pointer can be NULL, whereas a reference
cannot, so the extra checking ensures that the target language user does not pass in a value that translates to a NULL pointer and thereby preventing any potential NULL pointer dereferences.
The $naturalvar feature will apply to global variables in addition to member variables in some language modules, eg C# and Java.

The naturalvar behavior can also be turned on as a global setting via the -naturalvar commandline option or the module mode option, $¥module (naturalvar=1). However, any use of
$feature("naturalvar") will override the global setting.

Compatibility note: The $naturalvar feature was introduced in SWIG-1.3.28, prior to which it was necessary to manually apply the const reference typemaps, eg $apply const
std::string & { std::string * }, butthis example would also apply the typemaps to methods taking a std: : string pointer.

Compatibility note: Prior to SWIG-1.3.12, all members of unknown type were wrapped into accessor functions using pointers. For example, if you had a structure like this

struct Foo {
size t len;

}i

and nothing was known about size_t, then accessors would be written to work with size_t *. Starting in SWIG-1.3.12, this behavior has been modified. Specifically, pointers will only be
used if SWIG knows that a datatype corresponds to a structure or class. Therefore, the above code would be wrapped into accessors involving size_t. This change is subtle, but it smooths
over a few problems related to structure wrapping and some of SWIG's customization features.

6.7 Protection

SWIG wraps class members that are public following the C++ conventions, i.e., by explicit public declaration or by the use of using declarations. In general, anything specified in a private or
protected section will be ignored, although the internal code generator sometimes looks at the contents of the private and protected sections so that it can properly generate code for default
constructors and destructors. Directors could also modify the way non-public virtual protected members are treated.

By default, members of a class definition are assumed to be private until you explicitly give a “public:' declaration (This is the same convention used by C++).

6.8 Enums and constants

Enumerations and constants are handled differently by the different language modules and are described in detail in the appropriate language chapter. However, many languages map enums
and constants in a class definition into constants with the classname as a prefix. For example :

class Swig {
public:

enum {ALE, LAGER, PORTER, STOUT};
Yi

Generates the following set of constants in the target scripting language :

Swig ALE = Swig::ALE
Swig_ LAGER = 8
Swig PORTER =
Swig_STOUT = Swig::STOUT

Members declared as const are wrapped as read-only members and do not create constants.
6.9 Friends

6.9.1 Friend classes

Friend classes are a C++ feature that do not affect SWIG wrappers. SWIG simply parses the friend class declarations, but they are effectively ignored as they have no meaningful effect for
wrappers. An example of friend classes:

class X;

class Y;

class C {
// Friend classes have no effect on generated wrappers
friend class X;
friend Y;

}i

6.9.2 Friend function definitions

A friend function definition in a C++ class defines a non-member function of the class and simultaneously makes it a friend of the class. For example, if you have this code:

class Buddy {

int val;

friend int blah(Buddy *b) { return b->val; }
public:

yi

then the £riend function definition results in wrapper code equivalent to one generated for the following:

class Buddy {

int val;

friend int blah(Buddy *b);
public:

}i

6.7 Protection

SWIG-4.2 Documentation

int blah(Buddy *b) { return b->val; }

Access from target languages is thus as if blah was wrapped as a non-member function. The function is available and wrapped even if the friend is defined with private or protected access.

A friend definition, as in C++, is understood to be in the same scope that the class is defined in, hence the scoping required for SWIG directives, such as $ignore, is as follows:

%ignore bar::blah(Buddy *b);
// Not: %ignore bar::Buddy::blah(Buddy *b);

namespace bar {
class Buddy {
int val;
friend int blah(Buddy *b) { return b->val; }
public:
Yi
}

and a wrapper for blah will not be generated.
6.9.3 Friend function declarations
A C++ class can specify friends via friend function declarations. These functions are allowed access to the private and protected members of a class. This is pure C++ functionality and these

friend function declarations are hence quietly ignored by SWIG and do not result in any wrappers. Well, not always! The C++ rules for friends that SWIG needs to follow are not that simple.
Technically, only qualified function declarations are silently ignored by SWIG. Below are some examples of qualified friend declarations in a that are quietly ignored:

struct B {
int £();
B():
~B();

Yi
int g();

class A {
public:
// The following friend function-declarations are silently ignored (including constructor and destructor friends)
friend B::B();
friend B::~B();
friend int B::f();
friend int ::g();

Yi

In the example above, if SWIG parses the struct B and global function g (), then they are of course wrapped as normal.
6.9.4 Unqualified friend functions

Further clarification is required regarding both friend function definitions and declarations. In C++, friend function definitions can only be unqualified, whereas, friend function declarations can be
either unqualified or qualified. Qualified friend function declarations are silently ignored by SWIG as covered in the previous section. SWIG does generate wrappers for any unqualified friend
functions that it parses. This section goes through some of the complexities of wrapping unqualified friend functions.

Consider an unqualified friend function definition:

class Chum {
int val;
friend int blah() { Chum c; c.private_function(); return c.val; }
void private_ function();

public:

}i

The Chum: :blah () friend is very similar to theBuddy: :blah (Buddy *) friend presented earlier. However, the generated code to call blah () may not compile unlike the code to call
blah(Buddy *). The compiler error will be something like:

error: 'blah' was not declared in this scope

The reason one works and the other doesn't is due to the rules around unqualified friend definitions/declarations. Broadly, friends are not visible for lookup except via argument dependent
lookup that considers the class that the friend is defined/declared in, unless there is a matching declaration at namespace scope. This will probably only make sense if you are conversant with
this C++ concept, which is covered quite well at Argument-dependent lookup. In our examples,blah(Buddy *) is visible via argument dependent lookup, but blah () is not. The solution is
thus to provide a matching declarationin order to make the function visible to the compiler. Simply add:

int blah();

SWIG does not have to parse it. In all likelihood, your code already has the matching declaration as it is required in order for the friend function definition to be usable from pure C++ code.

The same potential problem applies to unqualified friend function declarations, such as:

class Mate {
int val;
friend int blah(); // Unqualified friend function declaration
void private_function();

public:

Yi

Again, the actual function declaration needs to be visible to the compiler. Or just the actual function definition as shown below. This must be defined in the same scope as Mate. Of course the
function definition is necessary in order to avoid linking issues too.

6.7 Protection 58

https://en.cppreference.com/w/cpp/language/adl

SWIG-4.2 Documentation

int blah() { Mate m; m.private function(); return m.val; }

6.10 References and pointers

C++ references are supported, but SWIG transforms them back into pointers. For example, a declaration like this :

class Foo {
public:

double bar(double &a);
}

has a low-level accessor

double Foo_bar(Foo *obj, double *a) {
obj->bar(*a);

}

As a special case, most language modules pass const references to primitive datatypes (int, short, float, etc.) by value instead of pointers. For example, if you have a function like this,

void foo(const int &x);

it is called from a script as follows:

foo(3) # Notice pass by value

Functions that return a reference are remapped to return a pointer instead. For example:

class Bar {
public:

Foo &spam();
}i

Generates an accessor like this:

Foo *Bar_spam(Bar *obj) {
Foo &result = obj->spam();
return &result;

However, functions that return const references to primitive datatypes (int, short, etc.) normally return the result as a value rather than a pointer. For example, a function like this,

const int &bar();

will return integers such as 37 or 42 in the target scripting language rather than a pointer to an integer.
Don't return references to objects allocated as local variables on the stack. SWIG doesn't make a copy of the objects so this will probably cause your program to crash.

Note: The special treatment for references to primitive datatypes is necessary to provide more seamless integration with more advanced C++ wrapping applications---especially related to
templates and the STL. This was first added in SWIG-1.3.12.

6.11 Pass and return by value

Occasionally, a C++ program will pass and return class objects by value. For example, a function like this might appear:

Vector cross_product(Vector a, Vector b);

If no information is supplied about Vector, SWIG creates a wrapper function similar to the following:

Vector *wrap_cross_product(Vector *a, Vector *b) {
Vector x;
Vector y;
Vector r;
X = *aj;
y = *b;
r = cross_product(x, y);
return new Vector(r);

In order for the wrapper code to compile, Vector must define a default constructor, copy assignment operator (and/or a move assignment operator for C++11 and later). The Movable and
move-only types section should be read regarding C++11 move semantics and return by value.

If vector is defined as a class in the interface, but it does not support a default constructor, SWIG changes the wrapper code by encapsulating the arguments inside a special C++ template
wrapper class, through a process called the "Fulton Transform". This produces a wrapper that looks like this:

Vector cross_product(Vector *a, Vector *b) {
SwigValueWrapper<vVector> x;
SwigValueWrapper<vVector> y;
SwigValueWrapper<Vector> r;

X = *a;

y = *b;

r = cross_product(x, y);
return new Vector(r);

6.10 References and pointers

SWIG-4.2 Documentation

This transformation is a little sneaky, but it provides support for pass-by-value even when a class does not provide a default constructor and it makes it possible to properly support a number of
SWIG's customization options. The definition of swigvValueWrapper can be found by reading the SWIG wrapper code. This class is really nothing more than a thin wrapper around a pointer.

Although SWIG usually detects the classes to which the Fulton Transform should be applied, in some situations it's necessary to override it. That's done with $feature ("valuewrapper")
to ensure it is used and $feature("novaluewrapper") to ensure it is not used:

%feature("novaluewrapper") A;
class A;

%feature("valuewrapper") B;
struct B {

B()i

00 coco
}i

It is well worth considering turning this feature on for classes that do have a default constructor. It will remove a redundant constructor call at the point of the variable declaration in the wrapper,
so will generate notably better performance for large objects or for classes with expensive construction. Alternatively consider returning a reference or a pointer.

Note: this transformation has no effect on typemaps or any other part of SWIG---it should be transparent except that you may see this code when reading the SWIG output file.

Note: This template transformation is new in SWIG-1.3.11 and may be refined in future SWIG releases. In practice, it is only absolutely necessary to do this for classes that don't define a
default constructor.

Note: The use of this template only occurs when objects are passed or returned by value. It is not used for C++ pointers or references.

6.12 Inheritance

SWIG supports C++ inheritance of classes and allows both single and multiple inheritance, as limited or allowed by the target language. The SWIG type-checker knows about the relationship
between base and derived classes and allows pointers to any object of a derived class to be used in functions of a base class. The type-checker properly casts pointer values and is safe to use
with multiple inheritance.

SWIG treats private or protected inheritance as close to the C++ spirit, and target language capabilities, as possible. In most cases, this means that SWIG will parse the non-public inheritance
declarations, but that will have no effect in the generated code, besides the implicit policies derived for constructors and destructors.

The following example shows how SWIG handles inheritance. For clarity, the full C++ code has been omitted.

// shapes.i
%module shapes

3{

#include "shapes.h"
%}

class Shape {
public:
double x, y;
virtual double area() = 0;
virtual double perimeter() = 0;
void set_location(double x, double y);
}i
class Circle : public Shape {
public:
Circle(double radius);
~Circle();
double area();
double perimeter();

Yi
class Square : public Shape {
public:

Square(double size);

~Square();
double area();
double perimeter();

When wrapped into Python, we can perform the following operations (shown using the low level Python accessors):

$ python

>>> import shapes

>>> circle = shapes.new_Circle(7)

>>> square = shapes.new_Square(10)

>>> print shapes.Circle area(circle)
153.93804004599999757

>>> print shapes.Shape_area(circle)
153.93804004599999757

>>> print shapes.Shape_area(square)
100.00000000000000000

>>> shapes.Shape_set_location(square, 2, -3)
>>> print shapes.Shape_perimeter (square)
40.00000000000000000

>>>

In this example, Circle and Square objects have been created. Member functions can be invoked on each object by making calls to Circle_area, Square_area, and so on. However, the
same results can be accomplished by simply using the shape_area function on either object.

One important point concerning inheritance is that the low-level accessor functions are only generated for classes in which they are actually declared. For instance, in the above example, the
method set_location() is only accessible as Shape_set_location() and notas Circle_set_location() or Square_set_location() . Of course, the
Shape_set_location() function will accept any kind of object derived from Shape. Similarly, accessor functions for the attributes x and y are generated as Shape_x_get (),
Shape_x_set(),Shape_y_get(), and Shape_y_set (). Functions such asCircle_x_get () are not available--instead you should use Shape_x_get ().

Note that there is a one to one correlation between the low-level accessor functions and the proxy methods and therefore there is also a one to one correlation between the C++ class methods
and the generated proxy class methods.

Note: For the best results, SWIG requires all base classes to be defined in an interface. Otherwise, you may get a warning message like this:

example.i:18: Warning 401: Nothing known about base class 'Foo'. Ignored.

6.12 Inheritance 60

SWIG-4.2 Documentation

If any base class is undefined, SWIG still generates correct type relationships. For instance, a function accepting a Foo * will accept any object derived from Foo regardless of whether or not
SWIG actually wrapped the Foo class. If you really don't want to generate wrappers for the base class, but you want to silence the warning, you might consider using the $import directive to
include the file that defines Foo. $import simply gathers type information, but doesn't generate wrappers. Alternatively, you could just define Foo as an empty class in the SWIG interface or
use warning suppression .

Note: typedef-names can be used as base classes. For example:

class Foo {
}i
typedef Foo FooObj;

class Bar : public FooObj { // Ok. Base class is Foo

}i

Similarly, typedef allows unnamed structures to be used as base classes. For example:

typedef struct {
} Foo;
class Bar : public Foo { // Ok.

Yi

Compatibility Note: Starting in version 1.3.7, SWIG only generates low-level accessor wrappers for the declarations that are actually defined in each class. This differs from SWIG1.1 which
used to inherit all of the declarations defined in base classes and regenerate specialized accessor functions such as Circle_x get(), Square x_get(),Circle_set_location(), and
Square_set_location(). This behavior resulted in huge amounts of replicated code for large class hierarchies and made it awkward to build applications spread across multiple modules
(since accessor functions are duplicated in every single module). It is also unnecessary to have such wrappers when advanced features like proxy classes are used. Note: Further
optimizations are enabled when using the -fvirtual option, which avoids the regenerating of wrapper functions for virtual members that are already defined in a base class.

6.13 A brief discussion of multiple inheritance, pointers, and type checking

When a target scripting language refers to a C++ object, it normally uses a tagged pointer object that contains both the value of the pointer and a type string. For example, in Tcl, a C++ pointer
might be encoded as a string like this:

_808fea88_p Circle

A somewhat common question is whether or not the type-tag could be safely removed from the pointer. For instance, to get better performance, could you strip all type tags and just use simple
integers instead?

In general, the answer to this question is no. In the wrappers, all pointers are converted into a common data representation in the target language. Typically this is the equivalent of casting a
pointer to void *. This means that any C++ type information associated with the pointer is lost in the conversion.

The problem with losing type information is that it is needed to properly support many advanced C++ features--especially multiple inheritance. For example, suppose you had code like this:

class A {
public:
int x;

}i

class B {
public:

int y;
Yi

class C : public A, public B {
b

int A_function(A *a) {
return a->x;

}

int B_function(B *b) {
return b->y;

}

Now, consider the following code that uses void

*

C *c = new C();
void *p = (void *) c;

int x = A function((A *) p);
int y = B_function((B *) p);

In this code, both A_function() and B_function() may legally accept an object of type ¢ * (via inheritance). However, one of the functions will always return the wrong result when used
as shown. The reason for this is that even though p points to an object of type ¢, the casting operation doesn't work like you would expect. Internally, this has to do with the data representation
of c. With multiple inheritance, the data from each base class is stacked together. For example:

------------ <=-= (C %), (A *)
| | <-- (3

Because of this stacking, a pointer of type C * may change value when it is converted to aa * orB *. However, this adjustment does not occur if you are converting from avoid *.

The use of type tags marks all pointers with the real type of the underlying object. This extra information is then used by SWIG generated wrappers to correctly cast pointer values under

6.13 A brief discussion of multiple inheritance, pointers, and type checking 61

SWIG-4.2 Documentation

inheritance (avoiding the above problem).

Some of the language modules are able to solve the problem by storing multiple instances of the pointer, for example, & *, in the A proxy class as well as ¢ * in the C proxy class. The

correct cast can then be made by choosing the correct void * pointer to use and is guaranteed to work as the cast to a void pointer and back to the same type does not lose any type
information:

C *c = new C();

void *p = (void *) c;
void *pA = (void *) c;
void *pB = (void *) c;

int x = A function((A *) pA);
int y = B_function((B *) pB);

In practice, the pointer is held as an integral number in the target language proxy class.
6.14 Default arguments

SWIG will wrap all types of functions that have default arguments. For example member functions:

class Foo {
public:

void bar(int x, int y = 3, int z = 4);
}i

SWIG handles default arguments by generating an extra overloaded method for each defaulted argument. SWIG is effectively handling methods with default arguments as if it was wrapping
the equivalent overloaded methods. Thus for the example above, it is as if we had instead given the following to SWIG:

class Foo {

public:
void bar(int x, int y, int z);
void bar(int x, int y);
void bar(int x);

}i

The wrappers produced are exactly the same as if the above code was instead fed into SWIG. Details of this are covered in the next section Overloaded functions and methods . This
approach allows SWIG to wrap all possible default arguments, but can be verbose. For example if a method has ten default arguments, then eleven wrapper methods are generated.

Please see the Features and default arguments section for more information on using $feature with functions with default arguments. The Renaming and ambiguity resolution section also
deals with using $rename and $ignore on methods with default arguments. If you are writing your own typemaps for types used in methods with default arguments, you may also need to
write a typecheck typemap. See the Typemaps and overloading section for details or otherwise use thecompactdefaultargs feature flag as mentioned below.

For C# please see the C# named and optional arguments section for information on special handling of default arguments available specifically for C#.
Compatibility note: Versions of SWIG prior to SWIG-1.3.23 wrapped default arguments slightly differently. Instead a single wrapper method was generated and the default values were copied

into the C++ wrappers so that the method being wrapped was then called with all the arguments specified. If the size of the wrappers are a concern then this approach to wrapping methods
with default arguments can be re-activated by using the compactdefaultargs feature flag.

%feature("compactdefaultargs") Foo::bar;
class Foo {
public:

void bar(int x, int y = 3, int z = 4);
}i

This is great for reducing the size of the wrappers, but the caveat is it does not work for the statically typed languages, such as C# and Java, which don't have optional arguments in the
language, Another restriction of this feature is that it cannot handle default arguments that are not public. The following example illustrates this:

class Foo {

private:
static const int spam;
public:
void bar(int x, int y = spam); // Won't work with %feature("compactdefaultargs") -
// private default value
}i

This produces uncompilable wrapper code because default values in C++ are evaluated in the same scope as the member function whereas SWIG evaluates them in the scope of a wrapper
function (meaning that the values have to be public).

The compactdefaultargs feature is automatically turned on when wrapping C code with default arguments. Some target languages will also automatically turn on this feature if the keyword

arguments feature (kwargs) is specified for either C or C++ functions, and the target language supports kwargs, the compactdefaultargs feature is also automatically turned on. Keyword

arguments are a language feature of some scripting languages, for example Ruby and Python. SWIG is unable to support kwargs when wrapping overloaded methods, so the default approach
cannot be used.

6.15 Overloaded functions and methods

In many language modules, SWIG provides partial support for overloaded functions, methods, and constructors. For example, if you supply SWIG with overloaded functions like this:

void foo(int x) {
printf("x is %d\n", x);

}

void foo(char *x) {
printf("x is '%s'\n", x);

}

The function is used in a completely natural way. For example:

>>> foo(3)
x is 3
>>> foo("hello")

6.14 Default arguments

SWIG-4.2 Documentation

x is 'hello’
>>>

Overloading works in a similar manner for methods and constructors. For example if you have this code,

class Foo {
public:
Foo();
Foo(const Foo &); // Copy constructor
void bar(int x);
void bar(char *s, int y);

}i

it might be used like this

>>> f = Foo() # Create a Foo
>>> f.bar(3)

>>> g = Foo(f) # Copy Foo

>>> f.bar("hello", 2)

6.15.1 Dispatch function generation

The implementation of overloaded functions and methods is somewhat complicated due to the dynamic nature of scripting languages. Unlike C++, which binds overloaded methods at compile
time, SWIG must determine the proper function as a runtime check for scripting language targets. This check is further complicated by the typeless nature of certain scripting languages. For
instance, in Tcl, all types are simply strings. Therefore, if you have two overloaded functions like this,

void foo(char *x);
void foo(int x);

the order in which the arguments are checked plays a rather critical role.

For statically typed languages, SWIG uses the language's method overloading mechanism. To implement overloading for the scripting languages, SWIG generates a dispatch function that
checks the number of passed arguments and their types. To create this function, SWIG first examines all of the overloaded methods and ranks them according to the following rules:

1. Number of required arguments. Methods are sorted by increasing number of required arguments.

2. Argument type precedence. All C++ datatypes are assigned a numeric type precedence value (which is determined by the language module).

Type Precedence
TYPE * 0 (High)
void * 20

Integers 40

Floating point 60

char 80

Strings 100 (Low)

Using these precedence values, overloaded methods with the same number of required arguments are sorted in increased order of precedence values.

This may sound very confusing, but an example will help. Consider the following collection of overloaded methods:

void foo(double);

void foo(int);

void foo(Bar *);

void foo();

void foo(int x, int y, int z, int w);
void foo(int x, int y, int z = 3);
void foo(double x, double y);

void foo(double x, Bar *z);

The first rule simply ranks the functions by required argument count. This would produce the following list:

[0] foo()

[1] foo(double) ;

[2] foo(int);

[31] foo(Bar *);

[4] foo(int x, int y, int z = 3);
[5] foo(double x, double y)

[6] foo(double x, Bar *z)

[71 foo(int x, int y, int z, int w);

The second rule, simply refines the ranking by looking at argument type precedence values.

[0] foo()

[1] foo(Bar *);

[2] foo(int);

[31] foo(double);

[4] foo(int x, int y, int z = 3);
[51] foo(double x, Bar *z)

[6] foo(double x, double y)

[7] foo(int x, int y, int z, int w);

Finally, to generate the dispatch function, the arguments passed to an overloaded method are simply checked in the same order as they appear in this ranking.

If you're still confused, don't worry about it---SWIG is probably doing the right thing.

6.14 Default arguments

63

SWIG-4.2 Documentation

6.15.2 Ambiguity in overloading

Regrettably, SWIG is not able to support every possible use of valid C++ overloading. Consider the following example:

void foo(int x);
void foo(long Xx);

In C++, this is perfectly legal. However, in a scripting language, there is generally only one kind of integer object. Therefore, which one of these functions do you pick? Clearly, there is no way
to truly make a distinction just by looking at the value of the integer itself (int and 1long may even be the same precision). Therefore, when SWIG encounters this situation, it may generate a
warning message like this for scripting languages:

Warning 509: Overloaded method foo(long) effectively ignored,
Warning 509: as it is shadowed by foo(int).

example.i
example.

or for statically typed languages like Java:

example.i:4: Warning 516: Overloaded method foo(long) ignored,
example.i:3: Warning 516: using foo(int) instead.

This means that the second overloaded function will be inaccessible from a scripting interface or the method won't be wrapped at all. This is done as SWIG does not know how to
disambiguate it from an earlier method.

Ambiguity problems are known to arise in the following situations:

Integer conversions. Datatypes such as int, long, and short cannot be disambiguated in some languages. Shown above.
Floating point conversion. £1oat and double can not be disambiguated in some languages.

Pointers and references. For example, Foo * and Foo & .

Pointers and arrays. For example, Foo * and Foo [4] .

Pointers and instances. For example, Foo and Foo * . Note: SWIG converts all instances to pointers.

Qualifiers. For example, const Foo * and Foo *.

Default vs. non default arguments. For example, foo(int a, int b) and foo(int a, int b = 3).

When an ambiguity arises, methods are checked in the same order as they appear in the interface file. Therefore, earlier methods will shadow methods that appear later.

When wrapping an overloaded function, there is a chance that you will get a warning message like this:

example.i:3: Warning 467: Overloaded foo(int) not supported (incomplete type checking rule -
no precedence level in typecheck typemap for 'int').

This error means that the target language module supports overloading, but for some reason there is no type-checking rule that can be used to generate a working dispatch function. The
resulting behavior is then undefined. You should report this as a bug to the SWIG bug tracking database if this is due to one of the typemaps supplied with SWIG.

If you get an error message such as the following,

foo.i:6. Overloaded declaration ignored. Spam::foo(double)

foo.i:5. Previous declaration is Spam::foo(int)

foo.i:7. Overloaded declaration ignored. Spam::foo(Bar *, Spam *, int)
foo.i:5. Previous declaration is Spam::foo(int)

it means that the target language module has not yet implemented support for overloaded functions and methods. The only way to fix the problem is to read the next section.
6.15.3 Renaming and ambiguity resolution

If an ambiguity in overload resolution occurs or if a module doesn't allow overloading, there are a few strategies for dealing with the problem. First, you can tell SWIG to ignore one of the
methods. This is easy---simply use the $ignore directive. For example:

%ignore foo(long);

void foo(int);
void foo(long); // Ignored. Oh well.

The other alternative is to rename one of the methods. This can be done using $rename. For example:

%rename("foo_short") foo(short);
$rename(foo_long) foo(long);

void foo(int);
void foo(short); // BAccessed as foo_short()
void foo(long); // Accessed as foo_long()

Note that the quotes around the new name are optional, however, should the new name be a C/C++ keyword they would be essential in order to avoid a parsing error. The $ignore and
srename directives are both rather powerful in their ability to match declarations. When used in their simple form, they apply to both global functions and methods. For example:

/* Forward renaming declarations */

$rename(foo_i) foo(int);

$rename(foo_d) foo(double);

void foo(int); // Becomes 'foo i’

void foo(char *c); // Stays 'foo' (not renamed)

class Spam {

public:
void foo(int); // Becomes ‘'foo_i'
void foo(double); // Becomes 'foo_d'
Yi

If you only want the renaming to apply to a certain scope, the C++ scope resolution operator (::) can be used. For example:

6.14 Default arguments

64

https://www.swig.org/bugs.html

SWIG-4.2 Documentation

$rename(foo_i) ::foo(int); // Only rename foo(int) in the global scope.
// (will not rename class members)

$rename(foo_i) Spam::foo(int); // Only rename foo(int) in class Spam

When a renaming operator is applied to a class as in Spam: : foo (int), it is applied to that class and all derived classes. This can be used to apply a consistent renaming across an entire
class hierarchy with only a few declarations. For example:

$rename(foo_i) Spam::foo(int);
%rename(foo_d) Spam::foo(double);

class Spam {

public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
b
class Bar : public Spam {
public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

class Grok : public Bar {

public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
}i

It is also possible to include 2rename specifications in the class definition itself. For example:

class Spam {
srename(foo_i) foo(int);
%rename(foo_d) foo(double);

public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

class Bar : public Spam {

public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
}i

In this case, the $rename directives still get applied across the entire inheritance hierarchy, but it's no longer necessary to explicitly specify the class prefix Spam: :.

A special form of $rename can be used to apply a renaming just to class members (of all classes):

$rename(foo_i) *::foo(int); // Only rename foo(int) if it appears in a class.

™

Note: the *: : syntax is non-standard C++, but the
the swig-devel mailing list.

is meant to be a wildcard that matches any class name (we couldn't think of a better alternative so if you have a better idea, send email to

Although this discussion has primarily focused on $rename all of the same rules also apply to $ignore. For example:

%ignore foo(double); // Ignore all foo(double)

%ignore Spam::foo; // Ignore foo in class Spam (and foo in any derived classes)

%ignore Spam::foo(double); // Ignore foo(double) in class Spam (and foo in any derived classes)
%ignore *::foo(double); // Ignore foo(double) in all classes

When applied to a base class, $ignore forces all definitions in derived classes to disappear. For example, $ignore Spam: :foo(double) will eliminate foo (double) in Spam and all
classes derived from spam.

Notes on %rename and %ignore:

« Since, the $rename declaration is used to declare a renaming in advance, it can be placed at the start of an interface file. This makes it possible to apply a consistent name resolution
without having to modify header files. For example:

gmodule foo
/* Rename these overloaded functions */
$rename(foo_i) foo(int);

%$rename(foo_d) foo(double);

%include "header.h"

« The scope qualifier (::) can also be used on simple names. For example:

%rename (bar) ::foo; // Rename foo to bar in global scope only
%rename (bar) Spam::foo; // Rename foo to bar in class Spam only
%rename(bar) *::foo; // Rename foo in classes only

« Name matching tries to find the most specific match that is defined. A qualified name such as Spam: : foo always has higher precedence than an unqualified name foo. Spam: : foo has
higher precedence than *: : foo and *: : foo has higher precedence than foo. A parameterized name has higher precedence than an unparameterized name within the same scope

6.14 Default arguments

https://www.swig.org/mail.html

SWIG-4.2 Documentation

level. However, an unparameterized name with a scope qualifier has higher precedence than a parameterized name in global scope (e.g., a renaming of Spam: : foo takes precedence
over a renaming of foo(int)).

« Renaming a class member, using an unparameterized but qualified name, such as Spam: : foo, also applies to members in all derived classes that have members with the same name.
This can be used to simply rename a method, across an entire class hierarchy for all overloaded and non-overloaded methods. This also applies to methods introduced via using
declarations, see Using declarations and inheritance. For example:

$rename (foo_new) Spam::foo;

class Spam {
public:

virtual void foo(int); // Renamed to foo_new
}i

class Bar : public Spam {
public:
virtual void foo(int); // Renamed to foo_new
void foo(bool, short, int); // Renamed to foo_new
}i

class Grok : public Bar {

public:
virtual void foo(int); // Renamed to foo_new
void foo(bool, int); // Renamed to foo_new
void foo(const char *); // Renamed to foo_new
void foo(Bar *); // Renamed to foo_new
}i
class Spok : public Grok {
public:
void foo(); // Renamed to foo_new
Yi
class Knock : public Spok {
public:
using Grok::foo; // Introduced methods renamed to foo_new
Yi

« The order in which $rename directives are defined does not matter as long as they appear before the declarations to be renamed. Thus, there is no difference between saying:

%rename (bar) foo;
$rename(foo_i) Spam::foo(int);
%rename (Foo) Spam::foo;

and this

%rename (Foo) Spam::foo;
%rename (bar) foo;
$rename(foo_i) Spam::foo(int);

(the declarations are not stored in a linked list and order has no importance). Of course, a repeated $rename directive will change the setting for a previous $rename directive if exactly
the same name, scope, and parameters are supplied.

« For multiple inheritance where renaming rules are defined for multiple base classes, the first renaming rule found on a depth-first traversal of the class hierarchy is used.

« The name matching rules strictly follow member qualifier rules. For example, if you have a class and member with a member that is const qualified like this:

class Spam {
public:

void bar() const;

the declaration

%rename (name) Spam::bar();

will not apply as there is no unqualified member bar (). The following will apply the rename as the qualifier matches correctly:

%rename (name) Spam::bar() const;

Similarly for combinations of cv-qualifiers and ref-qualifiers, all the qualifiers must be specified to match correctly:

%rename (name) Jam::bar(); // will not match
$rename (name) Jam::bar() &; // will not match
%rename(name) Jam::bar() const; // will not match

%$rename (name) Jam::bar() const &; // ok, will match

class Jam {
public:

void bar() const &;

An often overlooked C++ feature is that classes can define two different overloaded members that differ only in their qualifiers, like this:

class Spam {

6.14 Default arguments

SWIG-4.2 Documentation

public:
void bar(); // Unqualified member
void bar() const; // Qualified member
}i

%rename can then be used to target each of the overloaded methods individually. For example we can give them separate names in the target language:

%rename(namel) Spam::bar();
%rename (name2) Spam::bar() const;

Similarly,

if you merely wanted to ignore one of the declarations, use $ignore with the full qualifier. For example, the following directive would tell SWIG to ignore the const version of
bar () above:

%ignore Spam::bar() const; // Ignore bar() const, but leave other bar() alone

« Currently

no resolution is performed in order to match function parameters. This means function parameter types must match exactly. For example, namespace qualifiers and typedefs
will not work. The following usage of typedefs demonstrates this:

typedef int Integer;
$rename(foo_i) foo(int);

class Spam {
public:
void foo(Integer); // Stays 'foo' (not renamed)
}i
class Ham {
public:
void foo(int); // Renamed to foo_i
}i

« The name matching rules also use default arguments for finer control when wrapping methods that have default arguments. Recall that methods with default arguments are wrap
the equivalent overloaded methods had been parsed (Default arguments section). Let's consider the following example class:

ped as if

class Spam {
public:

void bar(int i=-1, double d=0.0);

}i

The following $rename will match exactly and apply to all the target language overloaded methods because the declaration with the default arguments exactly matches the wrap

method:

ped

$rename (newbar) Spam::bar(int i=-1, double d=0.0);

The C++
newbar (

method can then be called from the target language with the new name no matter how many arguments are specified, for example: newbar (2, 2.0),newbar(2) or
). However, if the $rename does not contain the default arguments:

%rename (newbar) Spam::bar(int i, double d);

then only

one of the three equivalent overloaded methods will be renamed and wrapped as if SWIG parsed:

void Spam::newbar(int i, double d);
void Spam ar(int i);
void Spam::bar();

The C++ method must then be called from the target language with the new name newbar (2, 2.0) when both arguments are supplied or with the original name as bar (2) (one
argument) or bar () (no arguments).

In fact it is possible to use $rename on the equivalent overloaded methods, to rename all the equivalent overloaded methods:

$rename (bar_2args) Spam: :bar(int i, double d);
$rename (bar_larg) Spam: :bar(int i);
$rename (bar_default) Spam::bar();

Similarly,

the extra overloaded methods can be selectively ignored using $ignore.

Compatibility note: The 2rename directive introduced the default argument matching rules in SWIG-1.3.23 at the same time as the changes to wrapping methods with default
arguments was introduced.

6.15.4 Comments on overloading

Support for overloaded methods was first added in SWIG-1.3.14. The implementation is somewhat unusual when compared to similar tools. For instance, the order in which declarations

appear is largel

ly irrelevant in SWIG. Furthermore, SWIG does not rely upon trial execution or exception handling to figure out which method to invoke.

Internally, the overloading mechanism is completely configurable by the target language module. Therefore, the degree of overloading support may vary from language to language. As a

general rule, st

atically typed languages like Java are able to provide more support than dynamically typed languages like Perl, Python, Ruby, and Tcl.

6.16 Overloaded operators

C++ overloaded operator declarations can be wrapped. For example, consider a class like this:

6.16 Overloaded operators

67

SWIG-4.2 Documentation

class Complex {
private:
double rpart, ipart;
public:
Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) { }
Complex &operator=(const Complex &c) {
rpart = c.rpart;
ipart = c.ipart;
return *this;
}
Complex operator+(const Complex &c) const {
return Complex(rpart+c.rpart, ipart+c.ipart);
}
Complex operator-(const Complex &c) const {
return Complex(rpart-c.rpart, ipart-c.ipart);
}
Complex operator*(const Complex &c) const {
return Complex(rpart*c.rpart - ipart*c.ipart,
rpart*c.ipart + c.rpart*ipart);
}
Complex operator-() const {
return Complex(-rpart, -ipart);
}
double re() const { return rpart; }
double im() const { return ipart; }

When operator declarations appear, they are handled in exactly the same manner as regular methods. However, the names of these methods are set to strings like "operator +"or
"operator -". The problem with these names is that they are illegal identifiers in most scripting languages. For instance, you can't just create a method called "operator +"in Python--
there won't be any way to call it.

Some language modules already know how to automatically handle certain operators (mapping them into operators in the target language). However, the underlying implementation of this is
really managed in a very general way using the $rename directive. For example, in Python a declaration similar to this is used:

$rename(__add__) Complex::operator+;

This binds the + operator to a method called __add___ (which is conveniently the same name used to implement the Python + operator). Internally, the generated wrapper code for a wrapped
operator will look something like this pseudocode:

_wrap_Complex add__(args) {
... get args ...
obj->operator+(args);

When used in the target language, it may now be possible to use the overloaded operator normally. For example:

>>> a = Complex(3, 4)
>>> b = Complex(5, 2)
>>>c=a+b # Invokes _ add _ method

It is important to realize that there is nothing magical happening here. The $rename directive really only picks a valid method name. If you wrote this:

%rename(add) operator+;

The resulting scripting interface might work like this:

[
i

= Complex(3, 4)
b = Complex(5, 2)
c = a.add(b) # Call a.operator+(b)

Al of the techniques described to deal with overloaded functions also apply to operators. For example:

%ignore Complex::operator=; // Ignore = in class Complex
%ignore *::operator=; // Ignore = in all classes
%ignore operator=; // Ignore = everywhere.

$rename(__sub__) Complex::operator-;
$rename(__neg_) Complex::operator-(); // Unary -

The last part of this example illustrates how multiple definitions of the operator- method might be handled.
Handling operators in this manner is mostly straightforward. However, there are a few subtle issues to keep in mind:

« In C++, it is fairly common to define different versions of the operators to account for different types. For example, a class might also include a friend function like this:

class Complex {
public:
friend Complex operator+(Complex &, double);
}i
Complex operator+(Complex &, double);

SWIG simply ignores all £riend declarations. Furthermore, it doesn't know how to associate the associated operator+ with the class (because it's not a member of the class).

It's still possible to make a wrapper for this operator, but you'll have to handle it like a normal function. For example:

6.16 Overloaded operators

68

SWIG-4.2 Documentation

%rename(add_complex double) operator+(Complex &, double);

« Certain operators are ignored by default. For instance,new and delete operators are ignored as well as conversion and index operators. A warning such as the one below is shown:

example.i:12: Warning 503: Can't wrap 'operator []' unless renamed to a valid identifier.

« The index operator, operator(], is particularly difficult to overload due to differences in C++ implementations. Specifically, the get and set operators in other languages typically are
separated into two methods such that additional logic can be packed into the operations; C# uses this[type key] { get { ... } set { ... }} ,Pythonuses__ getitem _
and __setitem , eftc. In C++ if the return type of operator(] is a reference and the method is const, it is often indicative of the setter, and the getter is usually a const function return

an object by value. In the absence of any hard and fast rules and the fact that there may be multiple index operators, it is up to the user to choose the getter and setter to use by using
%rename as shown earlier.

« The semantics of certain C++ operators may not match those in the target language.
6.17 Class extension

New methods can be added to a class using the $extend directive. This directive is primarily used in conjunction with proxy classes to add additional functionality to an existing class. For
example :

$module vector

3{

#include "vector.h"
%}

class Vector {
public:
double x, y, z;
Vector();
~Vector();
... bunch of C++ methods ...
gextend {
char *__str_ () {
static char temp[256];
sprintf(temp, "[%g, %g, %g 1", $self->x, $self->y, $self->z);
return &temp[0];

This code adds a __str___ method to our class for producing a string representation of the object. In Python, such a method would allow us to print the value of an object using the print

command.
>>>
>>> v = Vector();
>>> v.x = 3

>>> v.y = 4

>>> v.z = 0

>>> print(v)

[3.0, 4.0, 0.0]
>>>

The C++ 'this' pointer is often needed to access member variables, methods etc. The $self special variable should be used wherever you could use 'this'. The example above demonstrates
this for accessing member variables. Note that the members dereferenced by $self must be public members as the code is ultimately generated into a global function and so will not have any
access to non-public members. The implicit 'this' pointer that is present in C++ methods is not present in $extend methods. In order to access anything in the extended class or its base class,
an explicit 'this' is required. The following example shows how one could access base class members:

struct Base {
virtual void method(int v) {

}

int value;
}i
struct Derived : Base {
}i

%extend Derived {
virtual void method(int v) {
$self->Base::method(v); // akin to this->Base::method(v);
$self->value = v; // akin to this->value = v;

The following special variables are expanded if used within a %extend block: $name, $symname, $overname, $decl, $fulldecl, $parentclassname and $parentclasssymname. The Special
variables section provides more information each of these special variables.

The %extend directive follows all of the same conventions as its use with C structures. Please refer to the Adding member functions to C structures section for further details.

6.17.1 Replacing class methods

Suppose there is a method in a class that you need to replace and keep the method name the same. This can be achieved combining the $extend and $ignore directives covered earlier.
Here is an example to replace the MyClass: :mymethod():

%extend MyClass {
void mymethod() {
std::cout << "swig mymethod" << std::endl;
}
}

%ignore MyClass::mymethod;

6.17 Class extension 69

SWIG-4.2 Documentation

%inline %{
class MyClass {
public:
void mymethod() {
std::cout << "class mymethod" << std::endl;
}
Yi
%}

Or if your code organization makes more sense to put the $extend after the class definition, you would need the following:

grename("") MyClass::mymethod; // unignores the method

before the $extend or SWIG will continue to ignoremymethod (), even in an $extend.

Note that you can call the class method from the method in $extend, just use self->mymethod () and it will call the class method, not the one in $extend.
6.18 Templates

Template type names may appear anywhere a type is expected in an interface file. For example:

void foo(vector<int> *a, int n);
void bar(std::array<int, 100> *x);

There are some restrictions on the use of non-type arguments. Simple literals are supported, and so are most constant expressions. However, there are some limitations on the use of '<' and
'>"in constant expressions (but note that '<=" and '>="are fully supported). For example:

void bar(std::array<int, 100> *x); // OK
void 2%50> *x); // OK
void (1<2 2 100 : 50)> *x) // OK
void 1<2 ? 100 : 50> *x) // Not supported
void bar(std::array<int, (2>1 ? 100 : 50)> *x) // Not supported

Th

@

type system is smart enough to figure out clever games you might try to play with typedef. For instance, consider this code:

typedef int Integer;
void foo(vector<int> *x, vector<Integer> *y);

In this case, vector<Integer> is exactly the same type asvector<int>. The wrapper for foo () will accept either variant.
6.18.1 The %template directive

There are a couple of important points about template wrapping. First, a bare C++ template does not define any sort of runnable object-code for which SWIG can normally create a wrapper.
Therefore, in order to wrap a template, you need to give SWIG information about a particular template instantiation (e.g., vector<int>, array<double>, etc.). Second, an instantiation name
such as vector<int> is generally not a valid identifier name in most target languages. Thus, you will need to give the template instantiation a more suitable name such as intvector.

To illustrate, consider the following class template definition:

template<class T> class List {
private:
T *data;
int nitems;
int maxitems;
public:
List(int max) {
data = new T [max];
nitems = 0;
maxitems = max;
}
~List() {
delete [] data;
Yi
void append(T obj) {
if (nitems < maxitems) {
data[nitems++] = obj;
}
}
int length() {
return nitems;
}
T get(int n) {
return data[n];
}
}i

By itself, this class template is useless--SWIG simply ignores it because it doesn't know how to generate any code unless a definition of T is provided. The $template directive is required to
instantiate the template for use in a target language. The directive requires an identifier name for use in the target language plus the template for instantiation. The example below instantiates
List<int> for use as a class namedintList:

%template(intList) List<int>;

The instantiation expands the template code as a C++ compiler would do and then makes it available under the given identifier name. Essentially it is the same as wrapping the following
concept code where the class template definition has T expanded to int (note that this is not entirely valid syntax):

%rename(intList) List<int>; // Rename to a suitable identifier
class List<int> {
private:

int *data;

int nitems;

6.18 Templates

SWIG-4.2 Documentation

int maxitems;

public:
List(int max);
~List();
void append(int obj);
int length();
int get(int n);

The argument to $template () is the name of the instantiation in the target language. The name you choose should not conflict with any other declarations in the interface file with one
exception---it is okay for the template name to match that of a typedef declaration. For example:

%template(intList) List<int>;

typedef List<int> intList; // OK

The $template directive must always appear after the definition of the template to be expanded, so the following will work:

template<class T> class List { ... };
%template(intList) List<int>;

but if %template is used before the template definition, such as:

%template(intList) List<int>;
template<class T> class List { ... };

SWIG will generate an error:

example.i:3: Error: Template 'List' undefined.

Since the type system knows how to handle typedef, it is generally not necessary to instantiate different versions of a template for typenames that are equivalent. For instance, consider this
code:

%template(intList) List<int>;
typedef int Integer;

void foo(List<Integer> *x);

In this case, List<Integer> is exactly the same type asList<int>. Any use of List<Integer> is mapped back to the instantiation of List<int> created earlier. Therefore, it is not
correct to instantiate a new class for the type Integer. An attempt to do so such as:

%template(intList) List<int>;
%template(IntegerList) List<Integer>; // Ignored

will result in the duplicate instantiation being ignored with a warning:

example.i:48: Warning 404: Duplicate template instantiation of 'List< Integer >' with name 'IntegerList' ignored,
example.i:47: Warning 404: previous instantiation of 'List< int >' with name 'intList'.

The template provided to $template for instantiation must be the actual template and not a typedef to a template.

typedef List<int> ListOfInt;

$template(intList) List<int>; // ok
%template(intList) ListOfInt; // illegal - Syntax error

6.18.2 Function templates

SWIG can also generate wrappers for function templates using a similar technique to that shown above for class templates. For example:

// Function template
template<class T> T max(T a, T b) { return a > b ? a : b; }

// Make some different versions of this function
%template(maxint) max<int>;
%template(maxdouble) max<double>;

In this case, maxint and maxdouble become unique names for specific instantiations of the function.

SWIG even supports overloaded templated functions. As usual the $template directive is used to wrap templated functions. For example:

template<class T> void foo(T x) { };
template<class T> void foo(T x, T y) { };

%template(foo) foo<int>;

This will generate two overloaded wrapper methods, the first will take a single integer as an argument and the second will take two integer arguments.
6.18.3 Default template arguments

The number of arguments supplied to $template should match that in the original template definition. Template default arguments are supported. For example:

6.18 Templates

SWIG-4.2 Documentation

template <typename T, int max=100> class vector {

%template(intvec) vector<int>; // OK
%template(vecl000) vector<int, 1000>; // OK

The $template directive should not be used to wrap the same template instantiation more than once. This also applies to default parameters where a template parameter specified in the
instantiation is the same as the default parameter. For example:

%template(vec) vector<double>; // OK
%template(vecl00) vector<double, 100>; // Ignored
will warn:

example.i:59: Warning 404: Duplicate template instantiation of 'vector< double,100 >' with name 'vecl00' ignored,
example.i:58: Warning 404: previous instantiation of 'vector< double >' with name 'vec'.

If this was not ignored, the template expansion would result in two identical classes. An identical instantiation is only wrapped once in order to reduce code bloat.
Compatibility Note: Versions prior to SWIG-4.2.0 would sometimes not detect and prevent duplicate instantiations, such as when the wrapped name was different.
6.18.4 Template base classes

When a template is instantiated using $template, information about that class is saved by SWIG and used elsewhere in the program. For example, if you wrote code like this,

%template(intList) List<int>;

class UltralList : public List<int> {

then SWIG knows that List<int> was already wrapped as a class called intList and arranges to handle the inheritance correctly. If, on the other hand, nothing is known about
List<int>, you will get a warning message similar to this:

example.h:42: Warning 401. Nothing known about class 'List< int >'. Ignored.
example.h:42: Warning 401. Maybe you forgot to instantiate 'List< int >' using %template.

If a class template inherits from another class template, you need to make sure that base classes are instantiated before derived classes. For example:

template<class T> class Foo {

template<class T> class Bar : public Foo<T> {

}i

// Instantiate base classes first

%template(intFoo) Foo<int>;
%template(doubleFoo) Foo<double>;

// Now instantiate derived classes
%template(intBar) Bar<int>;
%template(doubleBar) Bar<double>;

The order is important since SWIG uses the instantiation names to properly set up the inheritance hierarchy in the resulting wrapper code (and base classes need to be wrapped before
derived classes). Don't worry--if you get the order wrong, SWIG should generate a warning message.

If you have to instantiate a lot of different classes for many different types, you might consider writing a SWIG macro. For example:

$define TEMPLATE WRAP(prefix, T...)
%template(prefix ## Foo) Foo<T >;
%template(prefix ## Bar) Bar<T >;

%enddef

TEMPLATE_WRAP(int, int)

TEMPLATE_WRAP (double, double)

TEMPLATE_WRAP(String, char *)

TEMPLATE_WRAP (PairStringInt, std::pair<string, int>)

Note the use of a vararg macro for the type T. If this wasn't used, the comma in the templated type in the last example would not be possible.
6.18.5 Empty template instantiation

Occasionally, you may need to tell SWIG about classes that are defined by templates, but which aren't supposed to be wrapped. Since SWIG is not able to automatically instantiate templates
for this purpose, you must do it manually. To do this, simply use $template(), that is the empty template instantiation that omits providing a name. For example:

template<typename T> struct Traits {
typedef T type;

}i

%}

$template() Traits<int>; // instantiate Traits<int>, but don't wrap it

void traitor(Traits<int>::type val);

6.18 Templates 72

SWIG-4.2 Documentation

Without a template instantiation, SWIG does not know that the first parameter to the traitor function is type int and passing an integer to this function from any target language won't work.
The empty template instantiation adds the appropriate type information into SWIG's type system, without forcing one to wrap the Traits class.

Duplicate template instantiation are not allowed, as described in the Default template arguments section above. There is one exception where a named template instantiation can be followed
by an empty template instantiation. Duplicate empty template instantiations are silently ignored, unlike duplicate named template instantiations.

Unlike template class instantiations, template function instantiations must have a name. Consider the following:

template<class T> T tfunc(T x) { };
%template() tfunc<double>;

The empty template instantiation will be ignored with:

example.i:9: Warning 519: %template() contains no name. Template method ignored: tfunc< double >(double)

6.18.6 Template specialization

The SWIG template mechanism does support specialization. For instance, if you define a class like this,

template<> class List<int> {
private:
int *data;
int nitems;
int maxitems;
public:
List(int max);
~List();
void append(int obj);
int length();
int get(int n);

then SWIG will use this code whenever the user expands List<int> . In practice, this may have very little effect on the underlying wrapper code since specialization is often used to provide

slightly modified method bodies (which are ignored by SWIG). However, special SWIG directives such as $typemap, $extend, and so forth can be attached to a specialization to provide
customization for specific types.

Partial template specialization is partially supported by SWIG. For example, this code defines a template that is applied when the template argument is a pointer.

template<class T> class List<T*> {
private:
T *data;
int nitems;
int maxitems;
public:
List(int max);
~List();
void append(T obj);
int length();
T get(int n);
b

SWIG supports both template explicit specialization and partial specialization. Consider:

template<class T1l, class T2> class Foo { }; // (1) primary template
template<> class Foo<double *, int *> { }; // (2) explicit specialization
template<class T1, class T2> class Foo<Tl, T2 *> { }; // (3) partial specialization

SWIG is able to properly match explicit instantiations:

Foo<double *, int *> // explicit specialization matching (2)

SWIG implements template argument deduction so that the following partial specialization examples work just like they would with a C++ compiler:

Foo<int *, int *> // partial specialization matching (3)
Foo<int *, const int *> // partial specialization matching (3)
Foo<int *, int **> // partial specialization matching (3)

6.18.7 Member templates

Member templates are supported. The underlying principle is the same as for normal templates--SWIG can't create a wrapper unless you provide more information about types. For example, a
class with a member function template might look like this:

class Foo {
public:
template<class T> void bar(T x, Ty) { ... };

To expand the template, simply use $template inside the class.

class Foo {
public:
template<class T> void bar(T x, Ty) { ... };

$template(barint) bar<int>;

6.18 Templates

Or,

SWIG-4.2 Documentation

%template(bardouble) bar<double>;
Yi

if you want to leave the original class definition alone, just do this:

class Foo {

public:
template<class T> void bar(T x, T y) { ... };

Yi

%extend Foo {
%template(barint) bar<int>;
%template(bardouble) bar<double>;

Yi

or simply

class Foo {
public:
template<class T> void bar(T x, T y) { ... };

%template(bari) Foo::bar<int>;
%template(bard) Foo::bar<double>;

In this case, the $extend directive is not needed, and $template does exactly the same job, i.e., it adds two new methods to the Foo class.

Now, if your target language supports overloading, you can even try

and

%template(bar) Foo::bar<int>;
%template(bar) Foo::bar<double>;

since the two new wrapped methods have the same name 'bar', they will be overloaded, and when called, the correct method will be dispatched depending on the argument type.

When used with members, the $template directive may be placed in another class template. Here is a slightly perverse example:

// A template
template<class T> class Foo {
public:
// A member template
template<class S> T bar(S x, Sy) { ... };

// Expand a few member templates
%extend Foo {
%template(bari) bar<int>;
%template(bard) bar<double>;
}

// Create some wrappers for the template
%template(Fooi) Foo<int>;
%template(Food) Foo<double>;

Miraculously, you will find that each expansion of Foo has member functions bari () and bard() added.

A common use of member templates is to define constructors for copies and conversions. For example:

template<class T1, class T2> struct pair {
Tl first;
T2 second;
pair() : first(T1l()), second(T2()) { }
pair(const Tl &x, const T2 &y) : first(x), second(y) { }
template<class Ul, class U2> pair(const pair<uUl, U2> &x)
: first(x.first), second(x.second) { }

This declaration is perfectly acceptable to SWIG, but the constructor template will be ignored unless you explicitly expand it. To do that, you could expand a few versions of the constructor
the class template itself. For example:

%extend pair {
%template(pair) pair<Tl, T2>; // Generate default copy constructor
Yi

in

When using $extend in this manner, notice how you can still use the template parameters in the original template definition.

Alte

rnatively, you could expand the constructor template in selected instantiations. For example:

// Instantiate a few versions
%template(pairii) pair<int, int>;
%template(pairdd) pair<double, double>;

// Create a default constructor only
%extend pair<int, int> {

%template(paird) pair<int, int>; // Default constructor
}i

6.18 Templates

74

SWIG-4.2 Documentation

// Create default and conversion constructors
%extend pair<double, double> {
%template(paird) pair<double, double>; // Default constructor
%template(pairc) pair<int, int>; // Conversion constructor
}i

And if your target language supports overloading, then you can try instead:

// Create default and conversion constructors
%extend pair<double, double> {
%template(pair) pair<double, double>; // Default constructor
$template(pair) pair<int, int>; // Cconversion constructor
b

In this case, the default and conversion constructors have the same name. Hence, SWIG will overload them and define an unique visible constructor, that will dispatch the proper call
depending on the argument type.

6.18.8 Scoping and templates

The stemplate directive for a class template is the equivalent to an explicit instantiation of a C++ class template. The scope for a valid $template instantiation is the same as the scope

required for a valid explicit instantiation of a C++ template. A definition of the template for the explicit instantiation must be in scope where the instantiation is declared and must not be
enclosed within a different namespace.

For example, a few $template instantiations and C++ explicit instantiations are shown below:

namespace N {
template<typename T> class C {};

}

// valid
%template(cin) N::C<int>;
template class N::C<int>;

// valid

namespace N {
$template(cin) C<int>;
template class C<int>;

}

// valid

using namespace N;
%template(cin) C<int>;
template class C<int>;

// valid

using N::C;
%template(cin) C<int>;
template class C<int>;

// ill-formed

namespace unrelated {
using N::C;
%template(cin) C<int>;
template class C<int>;

}

// ill-formed

namespace unrelated {
using namespace N;
%template(cin) C<int>;
template class C<int>;

}

// ill-formed
namespace unrelated {
namespace N {
$template(cin) C<int>;
template class C<int>;
}
}

// ill-formed

namespace unrelated {
$template(cin) N::C<int>;
template class N::C<int>;

}

When the scope is incorrect, such as for the ill-formed examples above, an error occurs:

cpp_template scope.i:34: Error: 'C' resolves to 'N::C' and was incorrectly instantiated
in scope 'unrelated' instead of within scope 'N'.

A note for the C++ standard geeks out there; a valid instantiation is one which conforms to the C++03 standard as C++11 made a change to disallow using declarations and using directive:

find a template.

S

// valid C++403, ill-formed C++11
using N::C;
template class C<int>;

Compatibility Note: Versions prior to SWIG-4.0.0 did not error out with incorrectly scoped $template declarations, but this led to numerous subtle template scope problems.
6.18.9 More on templates

If all of this isn't quite enough and you really want to make someone's head explode, SWIG directives such as $rename, $extend, and $typemap can be included directly in template

6.18 Templates

0

SWIG-4.2 Documentation

definitions. For example:

// File : list.h
template<class T> class List {
public:
%rename(__getitem) get(int);
List(int max);
~List();
T get(int index);
%extend {
char *__str_ () {
/* Make a string representation */

In this example, the extra SWIG directives are propagated to every template instantiation.

It is also possible to separate these declarations from the class template. For example:

$rename(__getitem) List::get;
%extend List {
char *__str_ () {

/* Make a string representation */

;* Make a copy */
T *__copy_ () {
return new List<T>(*$self);
}
Yi

template<class T> class List {
public:

List() { }

T get(int index);

When %extend is decoupled from the class definition, it is legal to use the same template parameters as provided in the class definition. These are replaced when the template is expanded.
In addition, the $extend directive can be used to add additional methods to a specific instantiation. For example:

%template(intList) List<int>;

%extend List<int> {
void blah() {
printf("Hey, I'm an List<int>!\n");
}
}i

It is even possible to extend a class via $extend with template methods, for example:

%$include <std_string.i>

%inline %{
class ExtendMe {
public:
template <typename T>
T do_stuff impl(int a, T b, double d) {
return b;
}
}i
%}

%extend ExtendMe {
template<typename T>
T do_overloaded stuff(T b) {
return $self->do_stuff impl(0, b, 4.0);
}
}

$template(do_overloaded stuff) ExtendMe::do_overloaded_stuff<std::string>;
%template(do_overloaded stuff) ExtendMe::do_overloaded_stuff<double>;

The wrapped ExtendMe class will then have two (overloaded) methods called do_overloaded_stuff.
Compatibility Note: Extending a class with template methods was added in version 3.0.12

Needless to say, SWIG's template support provides plenty of opportunities to break the universe. That said, an important final point is that SWIG does not perform extensive error checking
of templates! Specifically, SWIG does not perform type checking nor does it check to see if the actual contents of the template declaration make any sense. Since the C++ compiler checks
this when it compiles the resulting wrapper file, there is no practical reason for SWIG to duplicate this functionality.

As SWIG's template support does not perform type checking $template can be used as early as after a template declaration. You can, and rarely have to, use $template before the
template parameters have been declared. For example:

template <class T> class OuterTemplateClass {};
// The nested class OuterClass::InnerClass inherits from the class template

// OuterTemplateClass<OuterClass::InnerStruct> and thus the template needs
// to be expanded with %template before the OuterClass declaration.

6.18 Templates 76

SWIG-4.2 Documentation

$template(OuterTemplateClass_OuterClass__InnerStruct)
OuterTemplateClass<OuterClass::InnerStruct>

// Don't forget to use %feature("flatnested") for OuterClass::InnerStruct and
// OuterClass::InnerClass if the target language doesn't support nested classes.
class OuterClass {
public:
// Forward declarations:
struct InnerStruct;
class InnerClass;

Yi
struct OuterClass::InnerStruct {};

// Expanding the template at this point with %template is too late as the

// OuterClass::InnerClass declaration is processed inside OuterClass.
class OuterClass::InnerClass :

public OuterTemplateClass<InnerStruct> {};

Compatibility Note: The first implementation of template support relied heavily on macro expansion in the preprocessor. Templates have been more tightly integrated into the parser and type
system in SWIG-1.3.12 and the preprocessor is no longer used. Code that relied on preprocessing features in template expansion will no longer work. However, SWIG still allows the #
operator to be used to generate a string from a template argument.

Compatibility Note: In earlier versions of SWIG, thes template directive introduced a new class name. This name could then be used with other directives. For example:

%template(vectori) vector<int>;
%extend vectori {

void somemethod() { }
}i

This behavior is no longer supported. Instead, you should use the original template name as the class name. For example:

%template(vectori) vector<int>;
%extend vector<int> {
void somemethod() { }

}i

Similar changes apply to typemaps and other customization features.
6.19 Namespaces

Support for C++ namespaces is comprehensive, but by default simple, however, some target languages can turn on more advanced namespace support via the nspace feature, described
later. Code within unnamed namespaces is ignored as there is no external access to symbols declared within the unnamed namespace. Before detailing the default implementation for named
namespaces, it is worth noting that the semantics of C++ namespaces is extremely non-trivial--especially with regard to the C++ type system and class machinery. At a most basic level,
namespaces are sometimes used to encapsulate common functionality. For example:

namespace math {
double sin(double);
double cos(double);

class Complex {
double im, re;
public:

Members of the namespace are accessed in C++ by prepending the namespace prefix to names. For example:

double x = math::sin(1.0);
double magnitude(math::Complex *c);
math::Complex c;

At this level, namespaces are relatively easy to manage. However, things start to get very ugly when you throw in the other ways a namespace can be used. For example, selective symbols
can be exported from a namespace with a using declaration:

using math::Complex;
double magnitude(Complex *c);

// Using declaration
// Namespace prefix stripped

Similarly, the contents of an entire namespace can be made available via a using directive:

using namespace math;
double x = sin(1.0);
double magnitude(Complex *c);

// Using directive

Alternatively, a namespace can be aliased:

namespace M = math;
double x = M::sin(1.0);
double magnitude(M::Complex *c);

Using combinations of these features, it is possible to write head-exploding code like this:

namespace A {

6.19 Namespaces

7

SWIG-4.2 Documentation

class Foo {
bi
}

namespace B {
namespace C {
using namespace A;
}
typedef C::Foo FooClass;
}

namespace BIGB = B;

namespace D {
using BIGB::FooClass;
class Bar : public FooClass {
}

Yi

class Spam : public D::Bar {
}i

void evil(A::Foo *a, B::FooClass *b, B::C::Foo *c, BIGB::FooClass *d,
BIGB::C::Foo *e, D::FooClass *f);

Given the possibility for such perversion, it's hard to imagine how every C++ programmer might want such code wrapped into the target language. Clearly this code defines three different
classes. However, one of those classes is accessible under at least six different names!

SWIG fully supports C++ namespaces in its internal type system and class handling code. If you feed SWIG the above code, it will be parsed correctly, it will generate compilable wrapper
code, and it will produce a working scripting language module. However, the default wrapping behavior is to flatten namespaces in the target language. This means that the contents of all
namespaces are merged together in the resulting scripting language module. For example, if you have code like this,

gmodule foo

namespace foo {
void bar(int);
void spam();

}

namespace bar {
void blah();
}

then SWIG simply creates three wrapper functions bar (), spam(), andblah() in the target language. SWIG does not prepend the names with a namespace prefix nor are the functions
packaged in any kind of nested scope. Note that the default handling of flattening all the namespace scopes in the target language can be changed via the nspace feature.

There is some rationale for taking this approach. Since C++ namespaces are often used to define modules in C++, there is a natural correlation between the likely contents of a SWIG module
and the contents of a namespace. For instance, it would not be unreasonable to assume that a programmer might make a separate extension module for each C++ namespace. In this case, it
would be redundant to prepend everything with an additional namespace prefix when the module itself already serves as a namespace in the target language. Or put another way, if you want

SWIG to keep namespaces separate, simply wrap each namespace with its own SWIG interface.

Because namespaces are flattened, it is possible for symbols defined in different namespaces to generate a name conflict in the target language. For example:

namespace A {
void foo(int);
}
namespace B {
void foo(double);

}

When this conflict occurs, you will get an error message that resembles this:

example.i:26: Error: 'foo' is multiply defined in the generated target language module.
example.i:23: Error: Previous declaration of 'foo'

To resolve this error, simply use $rename to disambiguate the declarations. For example:

$rename(B_foo) B::foo;
namespace A {

void foo(int);
}
namespace B {

void foo(double); // Gets renamed to B_foo

}

Similarly, $ignore can be used to ignore declarations.

C++ using directives and using declarations do not add any code to the generated wrapper code. However, there is an exception in one context, see Using declarations and inheritance for

introducing members of a base class into a derived class definition. C++ using declarations and directives are used by the internal type system to track type-names. Therefore, if you have
code like this:

namespace A {

typedef int Integer;
}
using namespace A;
void foo(Integer x);

SWIG knows that Integer is the same asA: : Integer which is the same as int.

Namespaces may be combined with templates. If necessary, the $template directive can be used to expand a template defined in a different namespace. For example:

6.19 Namespaces 78

SWIG-4.2 Documentation

namespace foo {
template<typename T> T max(T a, T b) { return a > b ? a : b; }

}
using foo::max;

%template(maxint) max<int>; // Okay.
%template(maxfloat) foo::max<float>; // Okay (qualified name).

namespace bar {

using namespace foo;

%template (maxdouble) max<double>; // Okay.
}

The combination of namespaces and other SWIG directives may introduce subtle scope-related problems. The key thing to keep in mind is that all SWIG generated wrappers are produced in
the global namespace. Symbols from other namespaces are always accessed using fully qualified names---names are never imported into the global space unless the interface happens to do
so with a using declaration. In almost all cases, SWIG adjusts typenames and symbols to be fully qualified. However, this is not done in code fragments such as function bodies, typemaps,
exception handlers, and so forth. For example, consider the following:

namespace foo {
typedef int Integer;
class bar {
public:
Yi
}

%extend foo::bar {
Integer add(Integer x, Integer y) {
Integer r = x + y; // Error. Integer not defined in this scope
return r;
}
b

In this case, SWIG correctly resolves the added method parameters and return type to foo: : Integer. However, since function bodies aren't parsed and such code is emitted in the global
namespace, this code produces a compiler error about Integer. To fix the problem, make sure you use fully qualified names. For example:

%extend foo::bar {

Integer add(Integer x, Integer y) {
foo::Integer r = X + y; // Ok.
return r;

}

b

Note: SWIG does notpropagate using declarations to the resulting wrapper code. If these declarations appear in an interface, they should also appear in any header files that might have
beenincludedina %{ ... %} section. In other words, don't insert extra using declarations into a SWIG interface unless they also appear in the underlying C++ code.

Note: Code inclusion directives such as${ ... %} or $inline %{ ... %} should not be placed inside a namespace declaration. The code emitted by these directives will not be
enclosed in a namespace and you may get very strange results. If you need to use namespaces with these directives, consider the following:

// Good version
%inline %{
namespace foo {

void bar(int) { ... }

// Bad version. Emitted code not placed in namespace.
namespace foo {
%inline %{
void bar(int) { ... } /* I'm bad */
2}
}

Note: When the gextend directive is used inside a namespace, the namespace name is included in the generated functions. For example, if you have code like this,

namespace foo {
class bar {
public:
%extend {
int blah(int x);

the added method blah() is mapped to a function int foo_bar_blah(foo::bar *self, int x). This function resides in the global namespace.

Note: Although namespaces are flattened in the target language, the SWIG generated wrapper code observes the same namespace conventions as used in the input file. Thus, if there are no
symbol conflicts in the input, there will be no conflicts in the generated code.

Note: In the same way that no resolution is performed on parameters, a conversion operator name must match exactly to how it is defined. Do not change the qualification of the operator. For
example, suppose you had an interface like this:

namespace foo {
class bar;
class spam {
public:
operator bar(); // Conversion of spam -> bar

6.19 Namespaces 79

SWIG-4.2 Documentation

The following is how the feature is expected to be written for a successful match:

%rename (tofoo) foo::spam::operator bar();

The following does not work as no namespace resolution is performed in the matching of conversion operator names:

%rename (tofoo) foo::spam::operator foo::bar();

Note, however, that if the operator is defined using a qualifier in its name, then the feature must use it too...

$rename (tofoo) foo::spam::operator bar(); // will not match
$rename (tofoo) foo::spam::operator foo::bar(); // will match
namespace foo {
class bar;
class spam {
public:
operator foo::bar();

Compatibility Note: Versions of SWIG prior to 1.3.32 were inconsistent in this approach. A fully qualified name was usually required, but would not work in some situations.
Note: The flattening of namespaces is only intended to serve as a basic namespace implementation. More advanced handling of namespaces is discussed next.

6.19.1 The nspace feature for namespaces

Some target languages provide support for the nspace feature. The feature can be applied to any class, struct, union or enum declared within a named namespace. The feature wraps the

type within the target language specific concept of a namespace, for example, a Java package or C# namespace. Please see the language specific sections to see if the target language you
are interested in supports the nspace feature.

The feature is demonstrated below for C# using the following example:

%feature("nspace") MyWorld::Material::Color;
%nspace MyWorld::Wrapping::Color; // %nspace is a macro for %feature("nspace")

namespace MyWorld {
namespace Material {
class Color {

namespace Wrapping {
class Color {

Without the nspace feature directives above or $rename , you would get the following warning resulting in just one of thecolor classes being available for use from the target language:

example.i:
example.i

Error: 'Color' is multiply defined in the generated target language module.
Error: Previous declaration of 'Color'

With the nspace feature the two Color classes are wrapped into the equivalent C# namespaces. A fully qualified constructor call of each these two types in C# is then:

MyWorld.Material.Color materialColor = new MyWorld.Material.Color();
MyWorld.Wrapping.Color wrappingColor = new MyWorld.Wrapping.Color();

Note that the nspace feature does not apply to variables and functions simply declared in a namespace. For example, the following symbols cannot co-exist in the target language without
renaming. This may change in a future version.

namespace MyWorld {

namespace Material
int quantity;
void dispatch();

}

namespace Wrapping
int quantity;
void dispatch();

}

-~

-~

Compatibility Note: The nspace feature was first introduced in SWIG-2.0.0.
6.20 Renaming templated types in nhamespaces

As has been mentioned, when %rename includes parameters, the parameter types must match exactly (no typedef or namespace resolution is performed). SWIG treats templated types
slightly differently and has an additional matching rule so unlike non-templated types, an exact match is not always required. If the fully qualified templated type is specified, it will have a higher
precedence over the generic template type. In the example below, the generic template type is used to rename to bbb and the fully qualified type is used to rename toccc.

%rename(bbb) Space::ABC::aaa(T t); // will match but with lower precedence than ccc
%rename(ccc) Space::ABC<Space::XYZ>::aaa(Space::XYZ t);// will match but with higher precedence
// than bbb

6.20 Renaming templated types in namespaces

SWIG-4.2 Documentation

namespace Space {
class XYZ {};
template<typename T> struct ABC {
void aaa(T t) {}
bi
}
%template(ABCXYZ) Space::ABC<Space::XYZ>;

It should now be apparent that there are many ways to achieve a renaming with %rename. This is demonstrated by the following two examples, which are effectively the same as the above
example. Below shows how %rename can be placed inside a namespace.

namespace Space {

%rename (bbb) ABC::aaa(T t); // will match but with lower precedence than ccc
$rename (ccc) ABC<Space::XYZ aaa(Space::XYZ t);// will match but with higher precedence than bbb
%rename (ddd) ABC<Space::XYZ>::aaa(XYZ t); // will not match

}

namespace Space {
class XYz {};
template<typename T> struct ABC {
void aaa(T t) {}
Yi

}
%template(ABCXYZ) Space::ABC<Space::XYZ>;

Note that ddd does not match as there is no namespace resolution for parameter types and the fully qualified type must be specified for template type expansion. The following example shows
how %rename can be placed within %extend.

namespace Space {
%extend ABC {
$rename(bbb) aaa(T t); // will match but with lower precedence than ccc
}
%extend ABC<Space::XYZ> {
$rename(ccc) aaa(Space::XYZ t);// will match but with higher precedence than bbb
$rename(ddd) aaa(XYZ t); // will not match
}
}

namespace Space {
class XYz {};
template<typename T> struct ABC {
void aaa(T t) {}
Yi

}
%template (ABCXYZ) Space::ABC<Space::XYZ>;

6.21 Exception specifications

When C++ programs utilize exceptions, exceptional behavior is sometimes specified as part of a function or method declaration. For example:

class Error { };

class Foo {
public:

void blah() throw(Error);

If an exception specification is used, SWIG automatically generates wrapper code for catching the indicated exception and, when possible, rethrowing it into the target language, or converting
it into an error in the target language otherwise. For example, in Python, you can write code like this:

f = Foo()
try:
f.blah()
except Error, e:
e is a wrapped instance of "Error"

Details of how to tailor code for handling the caught C++ exception and converting it into the target language's exception/error handling mechanism is outlined in the "throws" typemap section.

Since exception specifications are sometimes only used sparingly, this alone may not be enough to properly handle C++ exceptions. To do that, a different set of special SWIG directives are
used. Consult the "Exception handling with %exception" section for details. The next section details a way of simulating an exception specification or replacing an existing one.

6.22 Exception handling with %catches

Exceptions are automatically handled for methods with an exception specification. Similar handling can be achieved for methods without exception specifications through the $catches
feature. It is also possible to replace any declared exception specification using the $catches feature. In fact, scatches uses the same "throws" typemaps that SWIG uses for exception
specifications in handling exceptions. The $catches feature must contain a list of possible types that can be thrown. For each type that is in the list, SWIG will generate a catch handler, in the

same way that it would for types declared in the exception specification. Note that the list can also include the catch all specification "...". For example,

struct EBase { virtual ~EBase(); };
struct Errorl : EBase { };

struct Error2 : EBase {

struct Error3 : EBase {
struct Error4 : EBase {

e

%catches(Errorl, Error2, ...) Foo::bar();
%catches(EBase) Foo::blah();

class Foo {

6.21 Exception specifications

SWIG-4.2 Documentation

public:

void bar();
void blah() throw(Errorl, Error2, Error3, Error4);

}i

For the Foo: :bar () method, which can throw anything, SWIG will generate catch handlers for Exrrorl, Error2 as well as a catch all handler (...). Each catch handler will convert the caught
exception and convert it into a target language error/exception. The catch all handler will convert the caught exception into an unknown error/exception.

Without the $catches feature being attached toFoo: :blah (), SWIG will generate catch handlers for all of the types in the exception specification, that is, Errorl, Error2, Error3,
Error4. However, with the $catches feature above, just a single catch handler for the base class, EBase will be generated to convert the C++ exception into a target language
error/exception.

6.23 Pointers to Members

Starting with SWIG-1.3.7, there is limited parsing support for pointers to C++ class members. For example:

double do_op(Object *o, double (Object::*callback)(double, double));
extern double (Object::*fooptr) (double, double);
%constant double (Object::*F00)(double, double) = &Object::foo;

Although these kinds of pointers can be parsed and represented by the SWIG type system, few language modules know how to handle them due to implementation differences from standard
C pointers. Readers are strongly advised to consult an advanced text such as the "The Annotated C++ Manual” for specific details.

When pointers to members are supported, the pointer value might appear as a special string like this:

>>> print example.FOO
_££0d54a800000000_m Object f double double double
>>>

In this case, the hexadecimal digits represent the entire value of the pointer which is usually the contents of a small C++ structure on most machines.

SWIG's type-checking mechanism is also more limited when working with member pointers. Normally SWIG tries to keep track of inheritance when checking types. However, no such support
is currently provided for member pointers.

6.24 Smart pointers and operator->()

In some C++ programs, objects are often encapsulated by smart-pointers or proxy classes. This is sometimes done to implement automatic memory management (reference counting) or
persistence. Typically a smart-pointer is defined by a class template where the -> operator has been overloaded. This class is then wrapped around some other class. For example:

// Smart-pointer class
template<class T> class SmartPtr {
T *pointee;
public:
SmartPtr(T *p) : pointee(p) { ... }
T *operator->() {
return pointee;

}
}i

// Ordinary class
class Foo_Impl {
public:

int x;

virtual void bar();

Yi

// Smart-pointer wrapper
typedef SmartPtr<Foo_Impl> Foo;

// Create smart pointer Foo
Foo make_Foo() {
return SmartPtr<Foo_Impl>(new Foo_Impl());

}

// Do something with smart pointer Foo
void do_something(Foo f) {

printf("x = %d\n", f->x);

f->bar();
}

// Call the wrapped smart pointer proxy class in the target language 'Foo'
%template(Foo) SmartPtr<Foo_Impl>;

A key feature of this approach is that by defining operator-> the methods and attributes of the object wrapped by a smart pointer are transparently accessible. For example, expressions
such as these (from the previous example),

f->x
f->bar()

are transparently mapped to the following

(f.operator->())->x;
(f.operator->())->bar();

When generating wrappers, SWIG tries to emulate this functionality to the extent that it is possible. To do this, whenever operator->() is encountered in a class, SWIG looks at its returned
type and uses it to generate wrappers for accessing attributes of the underlying object. For example, wrapping the above code produces wrappers like this:

6.23 Pointers to Members

82

SWIG-4.2 Documentation

int Foo_x get(Foo *f) {
return (*f)->x;

}

void Foo_x_set(Foo *f, int value) {
(*£)->x = value;

}

void Foo_bar(Foo *f) {
(*f)->bar();

}

These wrappers take a smart-pointer instance as an argument, but dereference it in a way to gain access to the object returned by operator->(). You should carefully compare these
wrappers to those in the first part of this chapter (they are slightly different).

The end result is that access looks very similar to C++. For example, you could do this in Python:

>>> f = make Foo()
>>> print f.x

>>> f.bar()

When generating wrappers through a smart-pointer, SWIG tries to generate wrappers for all methods and attributes that might be accessible through operator->(). This includes any
methods that might be accessible through inheritance. However, there are a number of restrictions:

« Member variables and methods are wrapped through a smart pointer. Enumerations, constructors, and destructors are not wrapped.

« If the smart-pointer class and the underlying object both define a method or variable of the same name, then the smart-pointer version has precedence. For example, if you have this
code

class Foo {
public:

int x;
Yi

class Bar {
public:

int x;

Foo *operator->();
}i

then the wrapper for Bar: : x accesses the x defined in Bar, and not the x defined inFoo.

If your intent is to only expose the smart-pointer class in the interface, it is not necessary to wrap both the smart-pointer class and the class for the underlying object. However, you must still
tell SWIG about both classes if you want the technique described in this section to work. To only generate wrappers for the smart-pointer class, you can use the %ignore directive. For
example:

%ignore Foo;
class Foo { // Ignored
}i
class Bar {
public:
Foo *operator->();

Yi

Alternatively, you can import the definition of Foo from a separate file using $import.

Note: When a class defines operator->(), the operator itself is wrapped as a method __deref__ (). For example:

£ = Foo() # Smart-pointer
p = £._ deref () # Raw pointer from operator->

Note: To disable the smart-pointer behavior, use $ignore to ignore operator->(). For example:

%ignore Bar::operator->;

Note: Smart pointer support was first added in SWIG-1.3.14.
6.25 C++ reference counted objects - ref/unref feature

Another similar idiom in C++ is the use of reference counted objects. Consider for example:

class RCObj {
// implement the ref counting mechanism
int add_ref();
int del_ref();
int ref_count();

public:
virtual ~RCObj() = 0;

int ref() const {
return add_ref();

}

int unref() const {
if (ref_count() == | del ref() == 0) {
delete this;
return 0;

}

6.25 C++ reference counted objects - ref/unref feature

83

SWIG-4.2 Documentation

return ref_ count();
}
}i

class A : RCObj {
public:

A();

int foo();
Yi

class B {
A *_a;

public:
B(A *a) : _a(a) {
a->ref();

}

-B() {
a->unref();
}
}i

int main() {
A *a = new A(); // (count: 0)
a->ref(); // ‘a' ref here (count: 1)

B *bl = new B(a); // 'a' ref here (count: 2)

if (1 + 1 ==2) {

B *b2 = new B(a); // 'a' ref here (count: 3)

delete b2; // 'a' unref, but not deleted (count: 2)
}
delete bl; // 'a' unref, but not deleted (count: 1)
a->unref(); // ‘a' unref and deleted (count: 0)

In the example above, the 'A' class instance 'a' is a reference counted object, which can't be deleted arbitrarily since it is shared between the objects 'b1' and 'b2'. ‘A" is derived from a
Reference Counted Object 'RCObj', which implements the ref/unref idiom.

To tell SWIG that 'RCObj' and all its derived classes are reference counted objects, use the "ref" and "unref" features. These are also available as$refobject and $unrefobject,
respectively. For example:

%module example
%feature("ref") RCObj "$this->ref();"
%feature("unref") RCObj "S$this->unref();"

%include "rcobj.h"
%include "A.h"

where the code passed to the "ref" and "unref" features will be executed as needed whenever a new object is passed to Python, or when Python tries to release the proxy object instance,
respectively.

On the Python side, the use of a reference counted object is no different to any other regular instance:

def create A():
a = A() # SWIG ref 'a' - new object is passed to Python (count: 1)

bl = B(a) # C++ ref 'a (count: 2)
if 1 + 1 == 2:
b2 = B(a) # C++ ref 'a' (count: 3)
return a # 'bl' and 'b2' are released and deleted, C++ unref 'a' twice (count: 1)
a = create_A() # (count: 1)
exit # 'a' is released, SWIG unref 'a' called in the destructor wrapper (count: 0)

Note that the user doesn't explicitly need to call 'a->ref()' nor ‘a->unref()' (and neither 'delete a'). Instead, SWIG takes cares of executing the "ref" and "unref" calls as needed. If the user doesn't
specify the "ref/unref" feature for a type, SWIG will produce code equivalent to defining these features:

%feature("ref") "
%feature("unref") "delete $this;"

In other words, SWIG will not do anything special when a new object is passed to Python, and it will always 'delete’ the underlying object when Python releases the proxy instance.

The %newobject feature is designed to indicate to the target language that it should take ownership of the returned object. When used in conjunction with a type that has the "ref" feature
associated with it, it additionally emits the code in the "ref" feature into the C++ wrapper. Consider wrapping the following factory function in addition to the above:

%newobject AFactory;
A *AFactory() {
return new A();

}

The AFactory function now acts much like a call to thea constructor with respect to memory handling:

a = AFactory() # SWIG ref 'a' due to %newobject (count: 1)
exit # 'a' is released, SWIG unref 'a' called in the destructor wrapper (count: 0)

6.26 Using declarations and inheritance

6.26 Using declarations and inheritance

SWIG-4.2 Documentation

C++ using declarations are sometimes used to introduce members of base classes. For example:

class Foo {
public:

int blah(int x);
}i

class Bar {
public:

double blah(double x);
}i

class FooBar : public Foo, public Bar {
public:

using Foo::blah;

using Bar::blah;

char *blah(const char *x);
b

In this example, the using declarations make different versions of the overloaded blah () method accessible from the derived class. For example:

FooBar *f;

f->blah(3); // Ok. Invokes Foo::blah(int)
f->blah(3.5); // Ok. Invokes Bar::blah(double)
f->blah("hello"); // Ok. Invokes FooBar::blah(const char *)

SWIG emulates the same functionality when creating wrappers. For example, if you wrap this code in Python, the module works just like you would expect:

>>> import example

>>> f = example.FooBar/()
>>> f.blah(3)

>>> f.blah(3.5)

>>> f.blah("hello")

The C++11 standard supports using declarations for inheriting constructors and this is covered in Object construction improvement.

C++ using declarations can also be used to change access when applicable. For example, protected methods in a base class can be made public in a derived class:

class Foo {

protected:
int x;
int blah(int x);
}i
class Bar : public Foo {
public:
using Foo::x; // Make x public
using Foo::blah; // Make blah public

Yi

This also works in SWIG---the exposed declarations will be wrapped normally.

When using declarations are used as shown in these examples, declarations from the base classes are copied into the derived class and wrapped normally. When copied, the declarations
retain any properties that might have been attached using $rename , $ignore, or 3feature. Thus, if a method is ignored in a base class, it will also be ignored by a using declaration.

Because a using declaration does not provide fine-grained control over the declarations that get imported, because a single using declaration may introduce multiple methods, it may be
difficult to manage such declarations in applications that make heavy use of SWIG customization features. If you can't get using to work correctly, you can always modify the C++ code to
handle SWIG differently such as:

class FooBar : public Foo, public Bar {
public:
#ifndef SWIG
using Foo::blah;
using Bar::blah;
#else
int blah(int x); // explicitly tell SWIG about other declarations
double blah(double x);
#endif

char *blah(const char *x);
}i

If the C++ code being wrapped cannot be changed, make judicious usage of $extend and $rename to ignore and unignore declarations. The example below is effectively the same as above:

%extend FooBar {
int blah(int x) { return $self->Foo::blah(x); }
double blah(double x) { return $self->Bar::blah(x); }
}
%ignore FooBar::blah; // ignore all FooBar::blah below
%rename("") FooBar::blah(const char *x); // parameterized unignore

class FooBar : public Foo, public Bar {
public:

using Foo::blah;

using Bar::blah;

char *blah(const char *x);

}i

Notes:

« If a derived class introduces a method defined in a base class via aising declaration, there won't be a conflict due to incorrect additional methods. For example:

6.26 Using declarations and inheritance

file:///home/william/swig/github/swig/Tools/swig-4.2.1/Doc/Manual/CPlusPlus11_object_construction_improvement

SWIG-4.2 Documentation

class Foo {
public:
int blah(int);
double blah(double);
Yi

class Bar : public Foo {

public:
using Foo::blah; // Only introduces blah(double);
int blah(int);

Yi

« Renaming methods may prevent methods from being introduced into the derived class via using declarations. For example:

$rename(blah_long) Foo::blah(long);

class Foo {

public:

int blah(int);

long blah(long); // Renamed to blah_ long

Yi
class Bar : public Foo {
public:
using Foo::blah; // Only introduces blah(int)

double blah(double x);
Yi

The problem here is Foo: :blah is renamed toblah_long in the target language, but the using declaration in Bar is not renamed in the target language and thinks all introduced
methods should simply be called blah. It is not clear what target language names should be used in Bar and so the conflicting names are effectively ignored as they are not introduced
into the derived class for the target language wrappers. In such situations SWIG will emit a warning:

example.i:15: Warning 526: Using declaration Foo::blah, with name 'blah', is not actually using
example.i:10: Warning 526: the method from Foo::blah(long), with name 'blah_long', as the names are different.

Compatibility Note: This warning message was introduced in SWIG-4.1.0. Prior versions also effectively ignored the using declaration for the same reasons, but were silent about it.

If methods really need different names, please use of combinations of $rename, $ignore and $extend to achieve the desired outcome.
6.27 Nested classes

If the target language supports the nested classes concept (like Java), the nested C++ classes are wrapped as nested target language proxy classes. (In case of Java - "static" nested
classes.) Only public nested classes are wrapped. Otherwise there is little difference between nested and normal classes.

If the target language doesn't support nested classes directly, or the support is not implemented in the language module (like for Python currently), then the visible nested classes are moved to
the same name space as the containing class (nesting hierarchy is "flattened"). The same behaviour may be turned on for C# and Java by the %feature ("flatnested"); If there is a class with the
same name in the outer namespace the inner class (or the global one) may be renamed or ignored:

$rename (Bar_Foo) Bar::Foo;
class Foo {};
class Bar {
public:
class Foo {};
}i

If a nested class, within an outer class, has to be used as a template parameter within the outer class, then the template will have to be instantiated with $template before the beginning of
the outer class. An example can be found in the Templates section.

Compatibility Note: Prior to SWIG-3.0.0, there was limited nested class support. Nested classes were treated as opaque pointers. However, there was a workaround for nested class support
in these older versions requiring the user to replicate the nested class in the global scope, adding in a typedef for the nested class in the global scope and using the "nestedworkaround”
feature on the nested class. This resulted in approximately the same behaviour as the "flatnested" feature. With proper nested class support now available in SWIG-3.0.0, this feature has been
deprecated and no longer works requiring code changes. If you see the following warning:

example.i:8: Warning 126: The nestedworkaround feature is deprecated

consider using the "flatnested" feature discussed above which generates a non-nested proxy class, like the "nestedworkaround" feature did. Alternatively, use the default nested class code
generation, which may generate an equivalent to a nested proxy class in the target language, depending on the target language support.

SWIG-1.3.40 and earlier versions did not have the nestedworkaround feature and the generated code resulting from parsing nested classes did not always compile. Nested class warnings
could also not be suppressed using %warnfilter.

6.28 A brief rant about const-correctness

A common issue when working with C++ programs is dealing with all possible ways in which the const qualifier (or lack thereof) will break your program, all programs linked against your
program, and all programs linked against those programs.

Although SWIG knows how to correctly deal with const in its internal type system and it knows how to generate wrappers that are free of const-related warnings, SWIG does not make any
attempt to preserve const-correctness in the target language. Thus, it is possible to pass const qualified objects to non-const methods and functions. For example, consider the following code
in C++:

const Object * foo();
void bar(Object *);

// C++ code

void blah() {

bar(foo()); // Error: bar discards const
}i

Now, consider the behavior when wrapped into a Python module:

6.27 Nested classes

SWIG-4.2 Documentation

>>> bar(foo()) # Okay
>>>

Although this is clearly a violation of the C++ type-system, fixing the problem doesn't seem to be worth the added implementation complexity that would be required to support it in the SWIG
run-time type system. There are no plans to change this in future releases (although we'll never rule anything out entirely).

The bottom line is that this particular issue does not appear to be a problem for most SWIG projects. Of course, you might want to consider using another tool if maintaining constness is the
most important part of your project.

6.29 Callbacks to the target language

C/C++ function pointers are often used for callbacks and this is discussed in the Pointers to functions and callbacks section. The callback techniques described therein provide a way to control
callbacks to a C/C++ function but not callbacks into the target language. The techniques described below show how the director feature can be used to support callbacks from C/C++ to the
target language.

6.29.1 Introduction to director classes

The director feature enables the ability for a target language class to derive from a wrapped C++ class. The target language can override virtual methods of a wrapped C++ class, thereby
supporting cross-language polymorphism. Code can ‘call up' from C++ into the target language by simply calling a virtual method overridden in a derived class in the target language. The
wrapped C++ classes that have this ability are termed 'director' classes. The director feature is documented individually in each target language and the reader should locate and read this to
obtain a full understanding of directors.

6.29.2 Using directors and target language callbacks

SWIG's primary goal is to make it possible to call C/C++ code from a target language, however, the director feature enables the reverse. While there isn't simple direct support for calling target
language code from C, the director feature makes this possible. It does require some work and additional wrapper code to be provided by the user. The additional code required must be C++
and not C code and hence may introduce a small dependency on C++ if using a pure C project. In a nutshell, the user must create a C++ base class and turn it into a director class. A virtual
method in the director base class is required. SWIG generates the code to call up into the target language when wrapping the director virtual method.

Let's look at some details next. Consider the same function pointer for a callback called binary_op from the Pointers to functions and callbacks section. For completeness, the code required
for the module and director feature is also shown:

gmodule(directors="1") example

%4

int binary_op(int a, int b, int (*op)(int, int)) {
return op(a, b);

}

%}

The goal is to have a target language function that gets called by binary_op. The target language function should have the equivalent signature as the C/C++ function pointer int (*op)
(int, int).As we are using directors, we need a C++ virtual method with this signature, so let's define the C++ class and pure virtual method first and make it a director class via the
director feature:

%feature("director") BinaryOp;

%inline %{

struct BinaryOp {
virtual int handle(int a, int b) = 0;
virtual ~BinaryOp() {}

}i

%}

The following handler_helper function and binary_op_wrapper function completes the code needed in the C++/SWIG layer. The binary_op_wrapper function is wrapped by SWIG
and is very similar to the binary_op function, however, it takes a pointer to the director base class BinaryOp instead of a C/C++ function pointer.

3{

static BinaryOp *handler ptr = NULL;

static int handler_helper(int a, int b) {
// Make the call up to the target language when handler_ptr
// is an instance of a target language director class
return handler ptr->handle(a, b);

}

// If desired, handler ptr above could be changed to a thread-local variable in order to make thread-safe

%}

%inline %{
int binary_op_wrapper(int a, int b, BinaryOp *handler) {
handler ptr = handler;
int result = binary op(a, b, &handler_helper);
handler = NULL;
return result;
}
%}

On the target language side, we need to derive a class from BinaryOp and override the handle method. In Python this could be as simple as:

import example

PythonBinaryOp class is defined and derived from C++ class BinaryOp
class PythonBinaryOp(example.BinaryOp):

Define Python class 'constructor'
def _ init_(self):
Call C++ base class constructor
example.BinaryOp.__init__ (self)

Override C++ method: virtual int handle(int a, int b) = 0;
def handle(self, a, b):

Return the product

return a * b

6.29 Callbacks to the target language

SWIG-4.2 Documentation

For this to work from Python, an instance of the PythonBinaryOp class is created and then passed to binary op_wrapper. The net result is the binary_op function will in turn be called
which will call handler_helper which will call the virtualhandle method, that is, the Python methodhand1le in the PythonBinaryOp class. The result will be the product of 10 and 20 and
make its way back to Python and hence 200 will be printed with the following code:

handler = PythonBinaryOp()
result = example.binary op wrapper (10, 20, handler)
print result

This has thus demonstrated a C/C++ function pointer calling back into a target language function. The code could be made a little more user friendly by using $rename to provide the original
binary_op name from the target language instead ofbinary_op_wrapper. A C++ functor base class and Python functor class could also be used instead, but these are left as exercises
for the reader.

6.30 Where to go for more information

If you're wrapping serious C++ code, you might want to pick up a copy of "The Annotated C++ Reference Manual" by Ellis and Stroustrup. This is the reference document we use to guide a lot
of SWIG's C++ support.

7 SWIG and C++11

« Introduction
« Core language changes
o Rvalue reference and move semantics

= Rvalue reference inputs

= Rvalue reference outputs

= Movable and move-only types by value
Generalized constant expressions
Extern template
Initializer lists
Uniform initialization
Type inference
Range-based for-loop
Lambda functions and expressions
Alternate function syntax
Object construction improvement
Explicit overrides and final
Null pointer constant
Strongly typed enumerations
Double angle brackets
Explicit conversion operators
Type alias and alias templates
Unrestricted unions
Variadic templates
New character literals
New string literals
User-defined literals
Thread-local storage
Explicitly defaulted functions and deleted functions
Type long long int
Static assertions
Allow sizeof to work on members of classes without an explicit object
Exception specifications and noexcept
Control and query object alignment
Attributes
Methods with ref-qualifiers
« Standard library changes
Threading facilities
Tuple types
Hash tables
Regular expressions
General-purpose smart pointers
Extensible random number facility
Wrapper reference
Polymorphic wrappers for function objects
Type traits for metaprogramming
Uniform method for computing return type of function objects

°

o

°

°

°

°

°

°

o

°

°

o

°

°

o

°

°

o

°

°

°

°

°

°

o

°

°

o

°

o

°

°

o

°

°

°

°

°

°

7.1 Introduction

This chapter gives you a brief overview about the SWIG implementation of the C++11 standard.

SWIG supports the new C++ syntax changes with some minor limitations in some areas such as decltype expressions and variadic templates. Wrappers for the new STL types (unordered_
containers, result_of, tuples) are incomplete. The wrappers for the new containers would work much like the C++03 containers and users are welcome to help by adapting the existing
container interface files and submitting them as a patch for inclusion in future versions of SWIG.

7.2 Core language changes

7.2.1 Rvalue reference and move semantics

SWIG correctly parses the rvalue reference syntax '&&', for example the typical usage of it in the move constructor and move assignment operator below:

class MyClass {

std::vector<int> numbers;
public:
MyClass() : numbers() {}
MyClass(MyClass &&other) : numbers(std::move(other.numbers)) {}
MyClass & operator=(MyClass &&other) {
numbers = std::move(other.numbers);
return *this;
}
b

6.30 Where to go for more information

88

SWIG-4.2 Documentation

Rvalue references are designed for C++ temporaries and are not particularly useful when used from non-C++ target languages. One option is to just ignore them via $ignore. For example,
ignore the move constructor:

%ignore MyClass::MyClass(MyClass &&);

7.2.1.1 Rvalue reference inputs

Rvalue reference parameters are useful as input parameters in C++ for implementing move semantics, such as, in the move constructor and move assignment operator. This type of usage
can be useful from target languages too to avoid copying large objects.

If you do wrap a function/contructor with an rvalue reference parameter and pass a proxy class to it, SWIG will assume that after the call, the rvalue reference parameter object will have been
'moved'. The proxy class passed as the rvalue reference, will own the underlying C++ object up until it is used as an rvalue reference parameter. Afterwards, the proxy class will have the
underlying C++ pointer set to the nullptr so that the proxy class instance cannot be used again and the underlying (moved from) C++ object will be deleted after the function/constructor call has
returned.

In this way, the SWIG proxy class works much like an exclusively owned smart pointer (think of std: :unique_ptr), passing ownership to the called C++ function/constructor. Let's consider
an example in Java using the wrapped proxy class from above:

MyClass mc = new MyClass();
MyClass mcl = new MyClass(mc); // move constructor
MyClass mc2 = new MyClass(mc); // move constructor fails

The second call to the move constructor will fail as the me proxy instance has been moved. Each target language handles the moved proxy class slightly differently when attempting to move it
again, but typically you'll get an exception such as in Java:

Exception in thread "main" java.lang.RuntimeException: Cannot release ownership as memory is not owned
at MyClass.swigRelease(MyClass.java:27)
at MyClass.<init>(MyClass.java:55)
at runme.main(runme.java:18)

Note that both normal copy assignment operators as well as move assignment operators are ignored by default in the target languages with the following warning:

example.i:18: Warning 503: Can't wrap 'operator =' unless renamed to a valid identifier.

Using a $rename will remove the warning and also makes the move assignment operator available from the target language:

%rename (MoveAssign) MyClass::operator=(MyClass &&);

You can then use it, but like the move constructor example above, you cannot use a proxy class once it has already been moved:

MyClass mc = new MyClass();
MyClass mc2 = mc.MoveAssign(mc);
MyClass mc3 = mc.MoveAssign(mc); // Use of mc again will fail

It is of course perfectly possible in C++ for a function/constructor to not move an object passed to it in an rvalue reference parameter. The assumption that SWIG makes would then not hold
and customisation of the appropriate input typemaps would be required. For scripting languages, this would be for the 'in' typemap and for the non-scripting languages additional typemaps
such as the ‘javain' typemap, which is used to set the memory ownership of the underlying C++ object for Java, would also need copying and modifying appropriately.

Compatibility note: SWIG-4.1.0 changed the way that rvalue reference parameters were handled and implemented typemaps assuming that the proxy class owns the underlying C++ object
and transfers ownership of the object when a function/constructor with an rvalue reference parameter is called.

7.2.1.2 Rvalue reference outputs
While rvalue reference parameter inputs are not uncommon in C++ and can be usefully utilised from target languages, this cannot be said for rvalue reference outputs. Firstly, it is quite unusual
in C++ to have functions that return an rvalue reference. Secondly, these cases are nigh on impossible to use from a target language. The main problem is these references are for C++

compiler temporaries used on the stack and the target languages use objects on the heap and the concept of compiler temporary objects doesn't make sense from another language.

Using MyClass from earlier and this C++ code:

void use(MyClass &&mc);
MyClass && getl();
MyClass & get2();

SWIG wraps the get1 and get2 functions more or less identically. The returned references are converted into pointers that are not owned by the target language. It means that the following
perfectly valid C++ has no equivalent in any of the target languages:

use(getl());
use(std::move(get2()));

An attempt to call the equivalent use (get1()) from one of the target languages will result in the ownership failure mentioned in the previous section as the object being passed to the use
function is not owned by the proxy class. In order to own the object, it would need to be cloned for the object to move from the stack to the heap, for which an appropriate clone function would
be required, but may not even be available. Note that a move constructor or copy constructor may slice the object when inheritance is involved. Alternatively, customising the input rvalue
reference typemap, as mentioned in the previous section, could remove the ownership requirement. Another alternative would be to modify the output rvalue reference typemap to always
clone the rvalue reference object. Fortunately you're highly unlikely to have to solve any of these issues!

7.2.1.3 Movable and move-only types by value

SWIG has traditionally relied on wrapped C++ types to be copy constructible or copy assignable, either via an explicit or implicit copy constructor and copy assignment operator. Prior to
C++11, a function could not return nor take a type by value that was not copyable. In C++11 this is no longer the case. A type can also be movable if it has has a move constructor and a move
assignment operator. A move-only type is movable but not copyable; it has both the copy constructor and copy assignment operator deleted. Movable types can appear in function signatures
for passing 'by value' and in C++11 the object can then be moved rather than copied.

SWIG has support for both copyable and/or movable types. Support for move semantics is quite seamless when returning by value from a function. Support for move semantics is less so and
may require some customisation when passing by value to a function. First let's consider returning by value from a function.

The support for function return values is generically implemented in the "out" SWIGTYPE typemap which supports any type, including copyable, movable and move-only types. The typemap
code is very simple and written so that the compiler will call the move constructor if possible, otherwise the copy constructor:

6.30 Where to go for more information

SWIG-4.2 Documentation

%typemap(out) SWIGTYPE %{
$result = new $1_ltype($1);
%}

The above typemap is for C# and when used to wrap a move-only type such as:

struct MoveOnly {
int wval;
MoveOnly(): val(0) {}

MoveOnly(const MoveOnly &) = delete;
MoveOnly (MoveOnly &&) = default;

MoveOnly & operator=(const MoveOnly &) = delete;
MoveOnly & operator=(MoveOnly &&) = default;

static MoveOnly create() { return MoveOnly(); }
static void take(MoveOnly mo);
}i

will generate wrapper code for the create factory method:

SWIGEXPORT void * SWIGSTDCALL CSharp_ MoveOnly create() {
void * jresult ;
SwigValueWrapper< MoveOnly > result;

result = MoveOnly::create();
jresult = new MoveOnly(result);
return jresult;

}

swigValueWrapper is covered in Pass and return by value. Note that the generated code could be optimised further using the "optimal” attribute in the "out" typemap, so if the above
typemap is customised as follows (note that this is C# specific):

%typemap(out, optimal="1") MoveOnly $%{
$result = new $1_ltype($1);
%}

then the generated code will result in the object being optimally moved:

SWIGEXPORT void * SWIGSTDCALL CSharp_MoveOnly create() {
void * jresult ;
jresult = new MoveOnly(MoveOnly::create());
return jresult;

}

Now let's consider passing by value. We'll consider three cases; namely types that are:

1. Copyable and not movable - CopyOnly.
2. Copyable and movable - MovableCopyable.
3. Movable and not copyable - MoveOnly.

and for clarification, define these two additional types as follows:

struct CopyOnly {
int val;
CopyOnly(): val(0) {}

CopyOnly(const CopyOnly &) = default;
CopyOnly & operator=(const CopyOnly &) = default;

static CopyOnly create() { return CopyOnly(); }
static void take(CopyOnly co);
}i

struct MovableCopyable {
int wval;
MovableCopyable(): val(0) {}

MovableCopyable(const MovableCopyable &) = default;
MovableCopyable(MovableCopyable &&) = default;

MovableCopyable & operator=(const MovableCopyable &) = default;
MovableCopyable & operator=(MovableCopyable &&) = default;

static MovableCopyable create() { return MovableCopyable(); }
static void take(MovableCopyable mc);
Yi

The generated code is shown below for CopyOnly: : take (with additional comments for when constructors and assignment operators are called). While the code shown is C# specific, the
generated constructor and/or assignment operator calls are ultimately the same for all target languages.

SWIGEXPORT void SWIGSTDCALL CSharp_ CopyOnly take(void * jargl) {
CopyOnly argl ; // (a) Default constructor
CopyOnly *argpl ;

argpl = (CopyOnly *)jargl;

if (targpl) {
SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentNullException, "Attempt to dereference null CopyOnly", 0);
return ;

}

argl = *argpl; // (b) Copy assignment

CopyOnly: :take(SWIG_STD_MOVE(argl)); // (c) Copy constructor

6.30 Where to go for more information

SWIG-4.2 Documentation

Note that SWIG_STD_MOVE is a macro defined as shown below to use std: :move which is only available from C++11 onwards:

#if _ cplusplus >=201103L

define SWIG_STD_MOVE(OBJ) std::move(OBJ)
telse

define SWIG_STD_MOVE(OBJ) OBJ

#endif

Also note: (c) Copy constructor. Yes, when passing by value the copy constructor is called for all versions of C++, even C++11 and later even though std::move is specified. It's a C++ language
feature for types that don't have move semantics!

The generated code for MovableCopyable: : take is the same as for CopyOnly: : take, however, the C++ compiler will choose the move constructor this time where commented (c) Move
constructor.

SWIGEXPORT void SWIGSTDCALL CSharp MovableCopyable_take(void * jargl) {
MovableCopyable argl ; // (a) Default constructor
MovableCopyable *argpl ;

argpl = (MovableCopyable *)jargl;

if (largpl) {
SWIG_CsharpSetPendingExceptionArgument (SWIG_CSharpArgumentNullException, "Attempt to dereference null MovableCopyable", 0);
return ;

}

argl = *argpl; // (b) Copy assignment

MovableCopyable: : take (SWIG_STD_MOVE(argl)); // (c) Move constructor

There are two optimisation opportunities available.

1. Remove the default constructor call with the ¢ feature ("valuewrapper") covered in Pass and return by value and replace it with SwigvalueWrapper.

2. Apply the SWIGTYPE MOVE typemaps which are designed specifically to implement full move semantics when passing parameters by value. They replace the copy assignment with a
call to swigValueWrapper: :reset , which works much likestd: :unique_ptr::reset. These typemaps could alternatively have replaced the copy assignment with a move
assignment, but this is not maximally optimal.

Simply add the following before the MovableCopyable: : take method is parsed:

%valuewrapper MovableCopyable;
%include <swigmove.i>
%apply SWIGTYPE MOVE { MovableCopyable }

will result in this optimal code where just one move constructor is invoked:

SWIGEXPORT void SWIGSTDCALL CSharp MovableCopyable take(void * jargl) {
SwigValueWrapper< MovableCopyable > argl ; // (a) No constructors invoked
MovableCopyable *argpl ;

argpl = (MovableCopyable *)jargl;
if (largpl) {
SWIG_CSharpSetPendingExceptionArgument (SWIG_CSharpArgumentNullException, "Attempt to dereference null MovableCopyable", 0);
return ;
}
SwigValueWrapper< MovableCopyable >::reset(argl, argpl); // (b) No constructor or assignment operator invoked
MovableCopyable: :take(SWIG_STD_MOVE(argl)); // (c) Move constructor

Note that swigvalueWrapper will call the destructor for the pointer passed to it in the reset function. This pointer is the underlying C++ object that the proxy class owns. The details aren't
shown, but the 'csin' typemap also generates C# code to ensure that the proxy class releases ownership of the object. Please see the 'SWIGTYPE MOVE' typemaps in the swigmove.i file
provided for each target language. Therefore full move semantics are implemented; ownership is moved from the proxy class into the C++ layer and the net effect is the same as using an

rvalue reference parameter discussed earlier.

Lastly, let's consider the MoveOnly: : take function defined earlier. By default the generated code fails to compile as MoveOnly does not have a copy assignment operator. SWIG is not
designed to select a different typemap automatically for move-only types and the user must apply the SWIGTYPE MOVE typemaps to ensure that only move-only semantics are used.
However, SWIG is able to automatically use $feature ("valuewrapper") for move-only types so it is not necessary to explicitly use this feature. So in this move-only case, simply add the
following before MoveOnly: : take is parsed, which results in the same optimal code shown above for MovableCopyable:

%include <swigmove.i>
%apply SWIGTYPE MOVE { MoveOnly }

Compatibility note: SWIG-4.1.0 introduced support for taking advantage of types with move semantics and making it possible to easily use move only types.
7.2.2 Generalized constant expressions

SWIG parses and identifies the keyword constexpr, but cannot fully utilise it. These C++ compile time constants are usable as runtime constants from the target languages. Below shows
example usage for assigning a C++ compile time constant from a compile time constant function:

constexpr int XXX() { return 10; }
constexpr int YYY = XXX() + 100;

When either of these is used from a target language, a runtime call is made to obtain the underlying constant.
7.2.3 Extern template

SWIG correctly parses extern template explicit instantiation declarations. However, this template instantiation suppression in a translation unit has no relevance outside of the C++
compiler and so is not used by SWIG. SWIG only uses $template for instantiating and wrapping templates. Consider the class template below:

// Class template
template class std::vector<int>; // C++03 template explicit instantiation definition in C++

6.30 Where to go for more information 91

SWIG-4.2 Documentation

extern template class st
%template(VectorInt) std

vector<int>; // C++11 template explicit instantiation declaration (extern template)
ector<int>; // SWIG template instantiation

The above result in warnings:

example. i
example.i:

Warning 320: Explicit template instantiation ignored.
Warning 327: Extern template ignored.

Similarly for the function template below:

// Function template

template void Func<int>(); // C++03 template explicit instantiation definition in C++
extern template void Func<int>(); // C++11 template explicit instantiation declaration (extern template)
%template(FuncInt) Func<int>; // SWIG template instantiation

7.2.4 Initializer lists

Initializer lists are very much a C++ compiler construct and are not very accessible from wrappers as they are intended for compile time initialization of classes using the special
std::initializer listtype. SWIG detects usage of initializer lists and will emit a special informative warning each time one is used:

example.i:33: Warning 476: Initialization using std::initializer list.

Initializer lists usually appear in constructors but can appear in any function or method. They often appear in constructors which are overloaded with alternative approaches to initializing a
class, such as the std container's push_back method for adding elements to a container. The recommended approach then is to simply ignore the initializer-list constructor, for example:

%$ignore Container::Container(std::initializer list<int>);

class Container {

public:
Container(std::initializer list<int>); // initializer-list constructor
Container();
void push_back(const int &);

Alternatively you could modify the class and add another constructor for initialization by some other means, for example by a std: : vector:

%$include <std vector.i>
class Container {
public:
Container (const std::vector<int> &);
Container(std::initializer list<int>); // initializer-list constructor
Container();
void push_back(const int &);

And then call this constructor from your target language, for example, in Python, the following will call the constructor taking the std: : vector:

>>> ¢ = Container([1, 2, 3, 4])

If you are unable to modify the class being wrapped, consider ignoring the initializer-list constructor and using %extend to add in an alternative constructor:

%$include <std_vector.i>
%extend Container {
Container(const std::vector<int> &elements) {
Container *c = new Container();
for (int element : elements)
c->push_back(element);
return c;

}
%$ignore Container::Container(std::initializer list<int>);

class Container {

public:

Container(std::initializer list<int>); // initializer-list constructor
Container();

void push back(const int &);

The above makes the wrappers look is as if the class had been declared as follows:

%$include <std_vector.i>

class Container {

public:

Container(const std::vector<int> &);

// Container(std::initializer list<int>); // initializer-list constructor (ignored)
Container();

void push back(const int &);

std::initializer list is simply a container that can only be initialized at compile time. As it is just a C++ type, it is possible to write typemaps for a target language container to map onto
std::initializer_list. However, this can only be done for a fixed number of elements as initializer lists are not designed to be constructed with a variable number of arguments at
runtime. The example below is a very simple approach which ignores any parameters passed in and merely initializes with a fixed list of fixed integer values chosen at compile time:

6.30 Where to go for more information

SWIG-4.2 Documentation

$typemap(in) std::initializer_ list<int> {
$1 = {10, 20, 30, 40, 50};
}
class Container {
public:
Container(std::initializer list<int>); // initializer-list constructor
Container();
void push back(const int &);
}i

Any attempt at passing in values from the target language will be ignored and be replaced by {10, 20, 30, 40, 50}.Needless to say, this approach is very limited, but could be improved
upon, but only slightly. A typemap could be written to map a fixed number of elements on to the std: :initializer_list, but with values decided at runtime. The typemaps would be target
language specific.
Note that the default typemap for std: :initializer_list does nothing but issue the warning and hence any user supplied typemaps will override it and suppress the warning.

7.2.5 Uniform initialization

The curly brackets {} for member initialization are fully supported by SWIG:

struct BasicStruct {
int x;

double y;

b

struct AltStruct {
AltStruct(int x, double y) : x {x}, y_{y} {}

int x_;
double y_;
bi

BasicStruct varl{5, 3.2}; // only fills the struct components
AltStruct var2{2, 4.3}; // calls the constructor

Uniform initialization does not affect usage from the target language, for example in Python:

>>> a = AltStruct(10, 142.15)
>>> a.x

10 -

>>> a.y

142.15

7.2.6 Type inference

decltype () is supported with a few limitations. SWIG can parse all uses, but can't deduce the type in every situation where a C++ compiler can. The cases SWIG can deduce have
expanded with time and hopefully will continue to. For example, for the code

int i;
decltype(i) 3J;
decltype(i+j) k;

SWIG is able to deduce that the variablei and the expression i+3j both have type int.

Using an expression for the decltype which SWIG can't handle results in a warning:

int foo(int);
decltype(foo(0)) k; // Warning 344: Unable to deduce decltype for 'foo(0)'.

This warning should be viewed as a prompt to add in a manual ignore of the variable/function as in most cases the generated code will not compile. For the example above, ignore the symbol
that is declared using decltype and perhaps additionally suppress the warning as follows:

#pragma SWIG nowarn=SWIGWARN_CPP11_DECLTYPE
%ignore k;

If an ignore is not acceptable, a workaround is to redefine the symbol with the actual type, for example:

int k; // define k with the actual type
%ignore k; // ignore the real definition of k

You would typically put one of these workarounds in your interface file before using $include to get SWIG to parse the header which defines k.

SWIG supports auto as a type specifier for variables (with the same limitations for actually deducing the type as for decltype()), and for specifying the return type oflambdas and functions.
7.2.7 Range-based for-loop

This feature is part of the implementation block only. SWIG ignores it.
7.2.8 Lambda functions and expressions

SWIG correctly parses most of the Lambda functions syntax. For example:

auto val = [] { return something; };
auto sum = [](int x, int y) { return x+y; };
auto sum = [](int x, int y) -> int { return x+y; };

The lambda functions are removed from the wrappers for now, because of the lack of support for closures (scope of the lambda functions) in the target languages.

6.30 Where to go for more information

93

SWIG-4.2 Documentation

Lambda functions used to create variables can also be parsed, but due to limited support of auto when the type is deduced from the expression, the variables are simply ignored.

auto six = [](int x, int y) { return x+y; }(4, 2);

Better support should be available in a later release.
7.2.9 Alternate function syntax

SWIG fully supports the new definition of functions. For example:

struct SomeStruct {
int FuncName(int x, int y);
}i

can now be written as in C++11:

struct SomeStruct {
auto FuncName(int x, int y) -> int;
b

auto SomeStruct::FuncName(int x, int y) -> int {
return x + y;

}

The usage in the target languages remains the same, for example in Python:

>>> a = SomeStruct()
>>> a.FuncName(10, 5)
15

SWIG will also deal with type inference for the return type, as per the limitations described earlier. For example:

auto square(float a, float b) -> decltype(a);

7.2.10 Object construction improvement

There are three parts to object construction improvement. The first improvement is constructor delegation such as the following:

class A {

public:
int aj;
int bj;
int cj;

A() : A(10) {}

A(int aa) : A(aa, 20) {}

A(int aa, int bb) : A(aa, bb, 30) {}

A(int aa, int bb, int cc) { a=aa; b=bb; c=cc; }

where peer constructors can be called. SWIG handles this without any issue.

The second improvement is constructor inheritance via a using declaration. The extra constructors provided by the using declaration will add the appropriate constructors into the target

language proxy derived classes. In the example below a wrapper for the DerivedClass (int) constructor is added toDerivedClass:

class BaseClass {

public:
BaseClass(int iValue);
}i
class DerivedClass: public BaseClass {
public:
using BaseClass::BaseClass; // Adds DerivedClass(int) constructor
b

Compatibility note: SWIG-4.2.0 was the first version to generate wrappers for constructors inherited via using declarations.

The final part is member initialization at the site of the declaration. This kind of initialization is handled by SWIG.

class SomeClass {
public:
SomeClass() {}
explicit SomeClass(int new_value) : value(new_value) {}

int value = 5;
}i

7.2.11 Explicit overrides and final

The special identifiers final and override can be used on methods and destructors, such as in the following example:

struct BaseStruct {
virtual void ab() const = 0;
virtual void cd();
virtual void ef();
virtual ~BaseStruct();

6.30 Where to go for more information

94

SWIG-4.2 Documentation

struct DerivedStruct : BaseStruct {
virtual void ab() const override;
virtual void cd() final;
virtual void ef() final override;
virtual ~DerivedStruct() override;

Classes can also be marked as final, such as

struct FinalDerivedStruct final : BaseStruct {
virtual void ab() const override;

}i

Compatibility note: Final methods were supported much earlier than final classes. SWIG-4.1.0 was the first version to support classes marked as final.
7.2.12 Null pointer constant

The nullptr constant is mostly unimportant in wrappers. In the few places it has an effect, it is treated like NULL.
7.2.13 Strongly typed enumerations

SWIG supports strongly typed enumerations and parses the newenum class syntax and forward declarator for the enums, such as:

enum class MyEnum : unsigned int;

Strongly typed enums are often used to avoid name clashes such as the following:

struct Color {
enum class RainbowColors : unsigned int {
Red, Orange, Yellow, Green, Blue, Indigo, Violet

Yi

enum class WarmColors {
Yellow, Orange, Red
Yi

// Note normal enum
enum PrimeColors {

Red=100, Green, Blue
Yi

There are various ways that the target languages handle enums, so it is not possible to precisely state how they are handled in this section. However, generally, most scripting languages
mangle in the strongly typed enumeration's class name, but do not use any additional mangling for normal enumerations. For example, in Python, the following code

print Color.RainbowColors Red, Color.WarmColors Red, Color.Red

results in

0 2 100

Th

@

strongly typed languages often wrap normal enums into an enum class and so treat normal enums and strongly typed enums the same. The equivalent in Java is:

System.out.println(Color.RainbowColors.Red.swigValue() + " " + Color.WarmColors.Red.swigValue() + " " + Color.PrimeColors.Red.swigValye());

The C++11 enum base type, such as unsigned int, in the example above, is used by some language modules and is missing support in others. For example, in C#, the enum base type in
the example above is used and converted into a C# uint to specify the underlying C# enumeration type as follows:

public enum RainbowColors : uint {

Red,

Orange,
Yellow,
Green,
Blue,

Indigo,
Violet

7.2.14 Double angle brackets

SWIG correctly parses the symbols >> as closing the template block, if found inside it at the top level, or as the right shift operator >> otherwise.

std::vector<std::vector<int>> myIntTable;

7.2.15 Explicit conversion operators

SWIG correctly parses the keyword explicit for operators in addition to constructors now. For example:

class U {
public:
int uj;

}i

class V {
public:
int v;

6.30 Where to go for more information 95

SWIG-4.2 Documentation

Yi

class TestClass {

public:
//implicit converting constructor
TestClass(U const &val) { t=val.u; }

// explicit constructor
explicit TestClass(V const &val) { t=val.v; }

int t;
}i

struct Testable {
// explicit conversion operator
explicit operator bool() const {
return false;
}
}i

The effect of explicit constructors and operators has little relevance for the proxy classes as target languages don't have the same concepts of implicit conversions as C++. Conversion
operators either with or without explicit need renaming to a valid identifier name in order to make them available as a normal proxy method.

7.2.16 Type alias and alias templates

A type alias is a statement of the form:

using PFD = void (*)(double); // New introduced syntax

which is equivalent to the old style typedef:

typedef void (*PFD)(double); // The old style

The following is an example of an alias template:

template< typename T1, typename T2, int N >
class SomeType {
public:
Tl a;
T2 b;
Yi

template< typename T2 >
using TypedefName = SomeType<char*, T2, 5>;

SWIG supports both type aliasing and alias templates. However, in order to use an alias template, two $template directives must be used:

%template(SomeTypeBool) SomeType<char*, bool, 5>;
%template() TypedefName<bool>;

Firstly, the actual template is instantiated with a name to be used by the target language, as per any template being wrapped. Secondly, the empty template instantiation, $template(), is
required for the alias template. This second requirement is necessary to add the appropriate instantiated template type into the type system as SWIG does not automatically instantiate
templates. See the Templates section for more general information on wrapping templates.

7.2.17 Unrestricted unions

SWIG fully supports any type inside a union even if it does not define a trivial constructor. For example, the wrapper for the following code correctly provides access to all members in the
union:

struct point {
point() {}
point(int x, int y) : x (%), y_(y) {}
int x_, yv_;

Yi

#include <new> // For placement 'new' in the constructor below
union P {

int z;

double w;

point p; // Illegal in C++03; legal in C++11.

// Due to the point member, a constructor definition is required.

P() {

new(&p) point();

} pl;

7.2.18 Variadic templates

SWIG supports the variadic templates including the <> variadic class inheritance, variadic methods, variadic constructors and initializers. Example:

template <typename... BaseClasses> class ClassName : public BaseClasses... {
public:
ClassName (BaseClasses &&... baseClasses) : BaseClasses(baseClasses)... {}
void InstanceMethod(const BaseClasses&... baseClasses) {}
}i

The $template directive works as expected for variable template parameters.

struct A {

6.30 Where to go for more information

SWIG-4.2 Documentation

virtual void amethod();

virtual ~A();
}i
struct B {

virtual void bmethod();

virtual ~B();
Yi
%template(ClassName0) ClassName<>
%template(ClassNamel) ClassName<A>
%template(ClassName2) ClassName<A, B>

Example usage from say Python:

cn0 = ClassNameO ()
cn0.InstanceMethod()

a = A()

cnl = ClassNamel(a)
cnl.amethod()
cnl.InstanceMethod(a)

b = B()

cn2 = ClassName2(a, b)
cn2.InstanceMethod(a, b)
cn2.amethod()
cn2.bmethod ()

Support for the variadic sizeof () function also works:

const int SIZE = sizeof...(ClassName<A, B>);

In the above example SIZE is of course wrapped as a constant.

Compatibility note: SWIG-4.2.0 was the first version to fully support variadic templates. SWIG-3.0.0 provided initial support and was limited to only one variadic parameter.

7.2.19 New character literals

C++11 adds support for UCS-2 and UCS-4 character literals. These character literals are preceded by either 'u’ or 'U'.

charlé_t a = u'a';
char32_t b = U'b';

Compatibility note: SWIG-4.0.0 was the first version to support these Universal Coded Character Set (UCS) character literals.
7.2.20 New string literals

SWIG supports wide string and Unicode string constants and raw string literals.

// New string literals

wstring aa = L"Wide string";

const char *bb = u8"UTF-8 string";
const charlé_t *cc = u"UTF-16 string";
const char32_t *dd = U"UTF-32 string";

// Raw string literals

const char *XX = ")I'm an \"ascii\" \\ string.";

const char *ee = R"XXX()I'm an "ascii" \ string.)XXX"; // same as xx
wstring ff = LR"XXX(I'm a "raw wide" \ string.)XXX";

const char *gg = uBR"XXX(I'm a "raw UTF-8" \ string.)XXX";

const charlé_t *hh = uR"XXX(I'm a "raw UTF-16" \ string.)XXX";

const char32_t *ii = UR"XXX(I'm a "raw UTF-32" \ string.)XXX";

Non-ASCII string support varies quite a bit among the various target languages though.

Note: There is a bug currently where SWIG's preprocessor incorrectly parses an odd number of double quotes inside raw string literals.
7.2.21 User-defined literals

SWIG parses the declaration of user-defined literals, that is, the operator "" _mysuffix() function syntax.

Some examples are the raw literal:

OutputType operator "" _myRawLiteral(const char * value);

numeric cooked literals:

OutputType operator "" _mySuffixIntegral(unsigned long long);
OutputType operator "" _mySuffixFloat(long double);

and cooked string literals:

OutputType operator "" _mySuffix(const char * string_values, size_t num_chars);

OutputType operator "" _mySuffix(const wchar_t * string values, size_t num chars);
OutputType operator "" _mySuffix(const charl6é_t * string values, size_t num chars);
OutputType operator "" _mySuffix(const char32_t * string_values, size_t num_chars);

Like other operators that SWIG parses, a warning is given about renaming the operator in order for it to be wrapped:

6.30 Where to go for more information

97

SWIG-4.2 Documentation

example.i:27: Warning 503: Can't wrap 'operator "" _myRawLiteral' unless renamed to a valid identifier.

If %rename is used, then it can be called like any other wrapped method. Currently you need to specify the full declaration including parameters for %rename:

$rename (MyRawLiteral) operator"" _myRawLiteral(const char * value);

Or if you just wish to ignore it altogether:

%$ignore operator "" _myRawLiteral(const char * value);

Note that use of user-defined literals such as the following still give a syntax error:

OutputType varl = "1234" suffix;
OutputType var2 = 1234 suffix;
OutputType var3 = 3.1416_suffix;

7.2.22 Thread-local storage

SWIG correctly parses the thread_local keyword. For example, variables reachable by the current thread can be defined as:

struct A {

static thread_local int val;
b
thread local int global val;

The use of the thread_local storage specifier does not affect the wrapping process; it does not modify the wrapper code compared to when it is not specified. A variable will be thread local
if accessed from different threads from the target language in the same way that it will be thread local if accessed from C++ code.

7.2.23 Explicitly defaulted functions and deleted functions

SWIG handles explicitly defaulted functions, that is,= default added to a function declaration. Deleted definitions, which are also called deleted functions, have = delete added to the
function declaration. For example:

struct NonCopyable {

NonCopyable & operator=(const NonCopyable &) = delete; /* Removes operator= */

NonCopyable(const NonCopyable &) = delete; /* Removes copy constructor */

NonCopyable() = default; /* Explicitly allows the empty constructor */
}i

Wrappers for deleted functions will not be available in the target language. Wrappers for defaulted functions will of course be available in the target language. Explicitly defaulted functions have
no direct effect for SWIG wrapping as the declaration is handled much like any other method declaration parsed by SWIG.

Deleted functions are also designed to prevent implicit conversions when calling the function. For example, the C++ compiler will not compile any code which attempts to use an int as the type
of the parameter passed to £ below:

struct NoInt {
void f(double 1i);
void f(int) = delete;
Yi

This is a C++ compile time check and SWIG does not make any attempt to detect if the target language is using an int instead of a double though, so in this case it is entirely possible to pass
an int instead of a double to £ from Java, Python etc.

7.2.24 Type long long int
SWIG correctly parses and uses the newlong long type already introduced in C99 some time ago.
7.2.25 Static assertions

SWIG correctly parses the new static_assert declarations (though 3.0.12 and earlier had a bug which meant this wasn't accepted at file scope). This is a C++ compile time directive so
there isn't anything useful that SWIG can do with it.

template <typename T>
struct Check {

static_assert(sizeof(int) <= sizeof(T), "not big enough");
}i

7.2.26 Allow sizeof to work on members of classes without an explicit object

SWIG can parse the new sizeof() on types as well as on objects. For example:

struct A {
int member;
Yi

const int SIZE = sizeof(A::member); // does not work with C++03. Okay with C++11

In Python:

>>> SIZE
8

7.2.27 Exception specifications and noexcept

6.30 Where to go for more information

98

SWIG-4.2 Documentation

C++11 added in the noexcept specification to exception specifications to indicate that a function simply may or may not throw an exception, without actually naming any exception. SWIG
understands these, although there isn't any useful way that this information can be taken advantage of by target languages, so it is as good as ignored during the wrapping process. Below are
some examples of noexcept in function declarations:

static void noexl() noexcept;
int noex2(int) noexcept(true);
int noex3(int, bool) noexcept(false);

7.2.28 Control and query object alignment

An alignof operator is used mostly within C++ to return alignment in number of bytes, but could be used to initialize a variable as shown below. The variable's value will be available for
access by the target language as any other variable's compile time initialised value.

const int alignl = alignof(A::member);

The alignas specifier for variable alignment is not yet supported. Example usage:

struct alignas(16) S {
int num;
Yi
alignas(double) unsigned char c[sizeof(double)];

Use the preprocessor to work around this for now:

#define alignas(T)

7.2.29 Attributes

Attributes such as those shown below, are supported since SWIG 4.1.0 but are currently crudely ignored by the parser's tokeniser so they have no effect on SWIG's code generation.

int [[attrl]] i [[attr2, attr3]];

[[noreturn, nothrow]] void f [[noreturn]] ();

7.2.30 Methods with ref-qualifiers

C++11 non-static member functions can be declared with ref-qualifiers. Member functions declared with a & Ivalue ref-qualifiers are wrapped like any other function without ref-qualifiers.
Member functions declared with a && rvalue ref-qualifiers are ignored by default as they are unlikely to be required from non-C++ languages where the concept of rvalue-ness for the implied
*this pointer does not apply. The warning is hidden by default, but can be displayed as described in the section on Enabling extra warnings.

Consider:

struct RQ {
void ml(int x) &;
void m2(int x) &&;
b

The only wrapped method will be the Ivalue ref-qualified method m1 and if SWIG is run with the -Wwextra command-line option, the following warning will be issued indicating m2 is not
wrapped:

example.i:7: Warning 405: Method with rvalue ref-qualifier m2(int) && ignored.

If you unignore the method as follows, wrappers for m2 will be generated:

%feature("ignore", "0") RQ::m2(int x) &&;
struct RQ {

void ml(int x) &;

void m2(int x) &&;
Yi

Inspection of the generated C++ code, will show that std: :move is used on the instance of the RQ * class:

RQ *argl = (RQ *) 0 ;
int arg2 ;

argl = ...marshalled from target language...
arg2 ...marshalled from target language...

std::move(*argl).m2(arg2);

This will compile but when run, the move effects may not be what you want. As stated earlier, rvalue ref-qualifiers aren't really applicable outside the world of C++. However, if you really know
what you are doing, full control over the call to the method is possible via the low-level "action" feature. This feature completely replaces the call to the underlying function, that is, the last line
in the snippet of code above.

%feature("ignore", "0") RQ::m2(int X) &&;
%feature("action") RQ::m2(int x) && %{
RQ().m2(arg2);
2}
struct RQ {
void ml(int x) &;
void m2(int x) &&;
}i

resulting in:

6.30 Where to go for more information

SWIG-4.2 Documentation

RQ *argl = (RQ *) 0 ;
int arg2 ;

argl = ...marshalled from target language...
arg2 ...marshalled from target language...

RQ().m2(arg2);

Compatibility note: SWIG-4.0.0 was the first version to support ref-qualifiers.
7.3 Standard library changes

7.3.1 Threading facilities

SWIG does not currently wrap or use any of the new threading classes introduced (thread, mutex, locks, condition variables, task). The main reason is that SWIG target languages offer their
own threading facilities so there is limited use for them.

7.3.2 Tuple types
SWIG does not provide library files for the new tuple types yet. Variadic template support requires further work to provide substantial tuple wrappers.

7.3.3 Hash tables

The new hash tables in the STL are unordered_set, unordered_multiset, unordered map, unordered_multimap . These are not available in all target languages. Any missing
support can in principle be easily implemented by adapting the current STL containers.

7.3.4 Regular expressions
While SWIG could provide wrappers for the new C++11 regular expressions classes, there is little need as the target languages have their own regular expression facilities.
7.3.5 General-purpose smart pointers

SWIG provides special smart pointer handling for std: : shared_ptr in the same way it has support for boost: : shared_ptr. Please see the shared ptr smart pointer and unique_ptr smart
pointer library sections. There is no special smart pointer handling available for std: :weak_ptr.

7.3.6 Extensible random number facility
This feature extends and standardizes the standard library only and does not affect the C++ language nor SWIG.

7.3.7 Wrapper reference
Wrapper references are similar to normal C++ references but are copy-constructible and copy-assignable. They could conceivably be used in public APIs. There is no special support for
std: :reference_wrapper in SWIG though. Users would need to write their own typemaps if wrapper references are being used and these would be similar to the plain C++ reference
typemaps.

7.3.8 Polymorphic wrappers for function objects

SWIG supports functor classes in a few languages in a very natural way. However nothing is provided yet for the new std: : function template. SWIG will parse usage of the template like
any other template.

$rename(__call_) Test::operator(); // Default renaming used for Python

struct Test {
bool operator()(int x, int y); // function object
b

#include <functional>
std::function<void (int, int)> pF = Test; // function template wrapper

Example of supported usage of the plain functor from Python is shown below. It does not involve std: : function.

= Test()
= t(1l, 2) # invoke C++ function object

o
I

7.3.9 Type traits for metaprogramming

The type_traits functions to support C++ metaprogramming is useful at compile time and is aimed specifically at C++ development:

#include <type_traits>

// First way of operating.
template< bool B > struct algorithm {

template< class Tl, class T2 > static int do_it(Tl &, T2 &) { /*...*/ return 1; }
}i

// Second way of operating.
template<> struct algorithm<true> {

template< class T1l, class T2 > static int do_it(T1, T2) { /*...*/ return 2; }
Yi

// Instantiating 'elaborate' will automatically instantiate the correct way to operate, depending on the types used.
template< class T1l, class T2 > int elaborate(Tl A, T2 B) {

// Use the second way only if 'T1' is an integer and if 'T2' is a floating point,

// otherwise use the first way.

return algorithm< std::is_integral<Tl>::value && std::is_floating_point<T2>::value >::do_it(A, B);

}

SWIG correctly parses the template specialization, template types etc. However, metaprogramming and the additional support in the type_traits header is really for compile time and is not
much use at runtime for the target languages. For example, as SWIG requires explicit instantiation of templates via $template, there isn't much that std: :is_integral<int> is going to
provide by itself. However, template functions using such metaprogramming techniques might be useful to wrap. For example, the following instantiations could be made:

7.3 Standard library changes

SWIG-4.2 Documentation

%template(Elaborate) elaborate<int, int>;
%template(Elaborate) elaborate<int, double>;

Then the appropriate algorithm can be called for the subset of types given by the above $template instantiations from a target language, such as Python:

>>> Elaborate(0, 0)

1

>>> Elaborate(0, 0.0)
2

7.3.10 Uniform method for computing return type of function objects

The new std: :result_of class introduced in the <functional> header provides a generic way to obtain the return type of a function type via std: :result_of::type. There isn't any
library interface file to support this type. With a bit of work, SWIG will deduce the return type of functions when used in std: : result_of using the approach shown below. The technique
basically forward declares the std: :result_of template class, then partially specializes it for the function types of interest. SWIG will use the partial specialization and hence correctly use
the std::result_of::type provided in the partial specialization.

%inline %{

#include <functional>

typedef double(*fn_ptr) (double);
%}

namespace std {
// Forward declaration of result_of
template<typename Func> struct result of;
// Add in a partial specialization of result_of
template<> struct result of< fn ptr(double) > {

typedef double type;

Yi

}

$template() std::result_of< fn_ptr(double) >;
%inline %{

double square(double x) {
return (x * x);

}

template<class Fun, class Arg>

typename std::result of<Fun(Arg)>::type test_result impl(Fun fun, Arg arg) ({
return fun(arg);

}

%}

$template(test_result) test_result_impl< fn_ptr, double >;
%constant double (*SQUARE)(double) = square;

Note the first use of $template which SWIG requires to instantiate the template. The empty template instantiation suffices as no proxy class is required for
std::result_of<Fun(Arg)>::type as this type is really just a double. The second $template instantiates the template function which is being wrapped for use as a callback. The
$constant can then be used for any callback function as described in Pointers to functions and callbacks.

Example usage from Python should give the not too surprising result:

>>> test_result(SQUARE, 5.0)
25.0

Phew, that is a lot of hard work to get a callback working. You could just go with the more attractive option of just using double as the return type in the function declaration instead of
result of !

8 SWIG and C++14

« Introduction
« Core language changes
o Binary integer literals
o Return type deduction
« Standard library changes

8.1 Introduction

This chapter gives you a brief overview about the SWIG implementation of the C++14 standard. There isn't much in C++14 that affects SWIG, however, work has only just begun on adding
C++14 support.

Compatibility note: SWIG-4.0.0 is the first version to support any C++14 features.
8.2 Core language changes

8.2.1 Binary integer literals

C++14 added binary integer literals and SWIG supports these. Example:

int b = 0b101011;

8.2.2 Return type deduction

C++14 added the ability to specify auto for the return type of a function and have the compiler deduce it from the body of the function (in C++11 you had to explicitly specify a trailing return
type if you used auto for the return type).

8.1 Introduction

SWIG-4.2 Documentation
SWIG parses these types of functions, but with one significant limitation: SWIG can't actually deduce the return type! If you want to wrap such a function you will need to tell SWIG the return
type explicitly.

The trick for specifying the return type is to use $ignore to tell SWIG to ignore the function with the deduced return type, but first provide SWIG with an alternative declaration of the function
with an explicit return type. The generated wrapper will wrap this alternative declaration, and the call in the wrapper to the function will call the actual declaration. Here is an actual example:

std::tuple<int, int> va_static_cast();
%ignore va_static_cast();
#pragma SWIG nowarn=SWIGWARN_CPP14_AUTO

%inline %{
#include <tuple>

auto va_static_cast() {

return std::make tuple(0, 0);
}
%}

For member methods the trick is to use $extend to redeclare the method and call it as follows:

%extend X {
const char * a() const { return $self->a(); }
}
%inline %¢{
struct X {
auto a() const {
return "a string";
}
Yi
%}

Compatibility note: SWIG-4.2.0 first introduced support for functions declared with an auto return without a trailing return type.

8.3 Standard library changes

9 SWIG and C++17

« Introduction

« Core language changes
o Nested namespace definitions
o UTF-8 character literals
o Hexadecimal floating literals

« Standard library changes

9.1 Introduction

This chapter gives you a brief overview about the SWIG implementation of the C++17 standard. There isn't much in C++17 that affects SWIG, however, work has only just begun on adding
C++17 support.

Compatibility note: SWIG-4.0.0 is the first version to support any C++17 features.
9.2 Core language changes

9.2.1 Nested namespace definitions

C++17 offers a more concise syntax for defining namespaces. SWIG has support for nested namespace definitions such as:

namespace A::B::C {

}

This is the equivalent to the C++98 namespace definitions:

namespace A {
namespace B {
namespace C {

}
}
}

9.2.2 UTF-8 character literals

C++17 added UTF-8 (u8) character literals. These are of type char. Example:

char a = u8'a';

9.2.3 Hexadecimal floating literals

C++17 added hexadecimal floating literals. For example:

double f = 0xF.68p2;

8.3 Standard library changes

SWIG-4.2 Documentation

9.3 Standard library changes

10 SWIG and C++20

« Introduction
« Core language changes

o Spaceship operator

o Lambda templates

o Constexpr destructors
« Standard library changes

10.1 Introduction

This chapter gives you a brief overview about the SWIG implementation of the C++20 standard. Work has only just begun on adding C++20 support.

Compatibility note: SWIG-4.1.0 is the first version to support any C++20 features.
10.2 Core language changes

10.2.1 Spaceship operator

SWIG supports the spaceship operator <=> in constant expressions. To simplify handling of the return value type, it is currently treated as an integer rather than std: : strong_ordering,
etc. In practice we think that should do the right thing in most cases.

SWIG also recognises operator<=> which can be wrapped if renamed. There is not currently any default renaming for the operator or any attempt to automatically map it to a three-way
comparison operator in any of the target languages.

10.2.2 Lambda templates
SWIG should parse lambda templates, but like non-templated lambdas they aren't currently wrapped.
10.2.3 Constexpr destructors

Destructors that are declared constexpr are parsed and handled like any other constructor. For example:

class DtorA {
public:

constexpr ~DtorA() {}
}i

10.3 Standard library changes

11 Preprocessing

File inclusion

File imports

Conditional Compilation

Macro Expansion

SWIG Macros

€99 and GNU Extensions

Preprocessing and delimiters
o Preprocessing and %{ ... %} & " ... " delimiters
o Preprocessing and { ... } delimiters

Preprocessor and Typemaps

Viewing preprocessor output

The #error and #warning directives

SWIG includes its own enhanced version of the C preprocessor. The preprocessor supports the standard preprocessor directives and macro expansion rules. However, a number of
modifications and enhancements have been made. This chapter describes some of these modifications.

11.1 File inclusion

To include another file into a SWIG interface, use the $include directive like this:

%include "cpointer.i"

Unlike, #include, $include includes each file once (and will not reload the file on subsequent $include declarations). Therefore, it is not necessary to use include-guards in SWIG
interfaces.

By default, the #include is ignored unless you run SWIG with the -includeall option. The reason for ignoring traditional includes is that you often don't want SWIG to try and wrap
everything included in standard header system headers and auxiliary files.

11.2 File imports

SWIG provides another file inclusion directive with the $ import directive. For example:

%import "foo.i"

The purpose of $import is to collect certain information from another SWIG interface file or a header file without actually generating any wrapper code. Such information generally includes
type declarations (e.g., typedef) as well as C++ classes that might be used as base-classes for class declarations in the interface. The use of $import is also important when SWIG is used
to generate extensions as a collection of related modules. This is an advanced topic and is described in later in the Working with Modules chapter.

9.3 Standard library changes 103

SWIG-4.2 Documentation

The -importall directive tells SWIG to follow all#include statements as imports. This might be useful if you want to extract type definitions from system header files without generating any
wrappers.

11.3 Conditional Compilation

SWIG fully supports the use of #if, #ifdef, #ifndef, #else, #endif to conditionally include parts of an interface.

SWIG's preprocessor conditionals support the standard C/C++ preprocessor integer expressions. As a SWIG-specific extension, string equality and inequality tests are also supported, for

example:
#if defined _ cplusplus && (#__ VA ARGS__ != "" || #TYPE == "void")

The following symbols are predefined by SWIG when it is parsing the interface:
SWIG Always defined when SWIG is processing a file
SWIGIMPORTED Defined when SWIG is importing a file with %import
SWIG_VERSION Hexadecimal (binary-coded decimal) number containing SWIG version,

such as 0x010311 (corresponding to SWIG-1.3.11).

SWIGCSHARP Defined when using C#
SWIGD Defined when using D
SWIGGO Defined when using Go
SWIGGUILE Defined when using Guile
SWIGJAVA Defined when using Java
SWIGJAVASCRIPT Defined when using Javascript
SWIG_JAVASCRIPT_JSC Defined when using Javascript with -jsc
SWIG_JAVASCRIPT_V8 Defined when using Javascript with -v8 or -node
SWIG_JAVASCRIPT_ NAPI Defined when using Javascript with -napi
SWIGLUA Defined when using Lua
SWIGMZSCHEME Defined when using Mzscheme
SWIGOCAML Defined when using OCaml
SWIGOCTAVE Defined when using Octave
SWIGPERL Defined when using Perl
SWIGPHP Defined when using PHP (any version)
SWIGPHP7 Defined when using PHP 7 or later (with a compatible C API)
SWIGPYTHON Defined when using Python
SWIGR Defined when using R
SWIGRUBY Defined when using Ruby
SWIGSCILAB Defined when using Scilab
SWIGTCL Defined when using Tcl
SWIGXML Defined when using XML

SWIG also defines SWIG_VERSION and a target language macro in the generated wrapper file (since SWIG 4.1.0 - in older versions these were defined for some target languages but this
wasn't consistent). Best practice is to use SWIG-time conditional checks because that results in smaller generated wrapper sources.

In addition, SWIG defines the following set of standard C/C++ macros:

__LINE__ Current line number

_ FILE Current file name

__STDC___ Defined to indicate ISO C/C++

__cplusplus Defined when -c++ option used, value controlled by -std=c++NN
__STDC_VERSION__ May be defined when -c++ option is not used, value controlled by -std=cNN

Since SWIG 4.2.0, _ sTDC__is defined to 1 to match the behaviour of ISO C/C++ compilers. Before this SWIG defined it to have an empty value.
Since SWIG 4.2.0, _ cplusplus is defined to 199711L (the value for C++98) by default. Before this SWIG always defined it to have the value _ cplusplus.

Since SWIG 4.2.0, SWIG supports command line options -std=cNN and -std=c++NN to specify the C/C++ standards version. The only effect of these options is to set appropriate values for
__STDC_VERSION__ and__ cplusplus respectively, which is useful if you're wrapping headers which have preprocessor checks based on their values.

If your code requires these macros to be set to a version of the standard that is not a final official version, or one that SWIG is not yet aware of, you can simply redefine the appropriate macro
to an alternative value at the top of your interface file, for example:

#undef _ cplusplus
#define _ cplusplus 202211L

The following are language specific symbols that might be defined:

SWIG_D_VERSION Unsigned integer target version when using D
SWIGGO_CGO Defined when using Go for cgo

SWIGGO_GCCGO Defined when using Go for gccgo
SWIGGO_INTGO_SIZE Size of the Go type int when using Go (32 or 64)
SWIGPYTHON_BUILTIN Defined when using Python with -builtin
SWIG_RUBY_AUTORENAME Defined when using Ruby with -autorename

Interface files can look at these symbols as necessary to change the way in which an interface is generated or to mix SWIG directives with C code.
11.4 Macro Expansion

Traditional preprocessor macros can be used in SWIG interfaces. Be aware that the #define statement is also used to try and detect constants. Therefore, if you have something like this in
your file,

#ifndef FOO_H 1
#define FOO_H 1

#endif

you may get some extra constants such as FOO_H showing up in the scripting interface.

More complex macros can be defined in the standard way. For example:

11.3 Conditional Compilation

SWIG-4.2 Documentation

#define EXTERN extern
#ifdef _ STDC_

#define ISOC_(args) (args)
telse

#define ISOC_(args) ()
#endif

The following operators can appear in macro definitions:

o #x

Converts macro argument x to a string surrounded by double quotes ("x").
e x ##y

Concatenates x and y together to form xy.

e "X
If x is a string surrounded by double quotes, do nothing. Otherwise, turn into a string like #x. This is a non-standard SWIG extension.

11.5 SWIG Macros

SWIG provides an enhanced macro capability with the $define and $enddef directives. For example:

%define ARRAYHELPER(type, name)
%inline %{
type *new_ ## name (int nitems) {
return (type *) malloc(sizeof(type)*nitems);

void delete_ ## name(type *t) {
free(t);

}

type name ## _get(type *t, int index) {
return t[index];

}

void name ## _set(type *t, int index, type val) {
t[index] = val;

}

%}

%enddef

ARRAYHELPER(int, IntArray)
ARRAYHELPER (double, DoubleArray)

The primary purpose of $define is to define large macros of code. Unlike normal C preprocessor macros, it is not necessary to terminate each line with a continuation character (\)--the macro
definition extends to the first occurrence of $enddef. Furthermore, when such macros are expanded, they are reparsed through the C preprocessor. Thus, SWIG macros can contain all other
preprocessor directives except for nested $define statements.

The SWIG macro capability is a very quick and easy way to generate large amounts of code. In fact, many of SWIG's advanced features and libraries are built using this mechanism (such as
C++ template support).

11.6 C99 and GNU Extensions

SWIG-1.3.12 and newer releases support variadic preprocessor macros. For example:

#define DEBUGF(fmt, ...) fprintf(stderr, fmt, _ VA ARGS_)

When used, any extra arguments to . . . are placed into the special variable _ VA_ARGS__. This also works with special SWIG macros defined using $define.

SWIG allows a variable number of arguments to be empty. However, this often results in an extra comma (,) and syntax error in the resulting expansion. For example:

DEBUGF ("hello"); --> fprintf(stderr, "hello",);

To get rid of the extra comma, use ## like this:

#define DEBUGF(fmt, ...) fprintf(stderr, fmt, ##_ VA ARGS_)

SWIG also supports GNU-style variadic macros. For example:

#define DEBUGF(fmt, args...) fprintf(stdout, fmt, args)

Comment: It's not entirely clear how variadic macros might be useful to interface building. However, they are used internally to implement a number of SWIG directives and are provided to
make SWIG more compatible with C99 code.

11.7 Preprocessing and delimiters

The preprocessor handles { }, " " and %{ %} delimiters differently.
11.7.1 Preprocessing and %{ ... %} & " ... " delimiters

The SWIG preprocessor does not process any text enclosed in a code block %f{ ... %}. Therefore, if you write code like this,

%{
#ifdef NEED BLAH
int blah() {

}
#endif

%}

the contents of the ${ ... %} block are copied without modification to the output (including all preprocessor directives).

11.5 SWIG Macros

SWIG-4.2 Documentation

11.7.2 Preprocessing and { ... } delimiters

SWIG always runs the preprocessor on text appearing inside { ... }.However, sometimes it is desirable to make a preprocessor directive pass through to the output file. For example:

%extend Foo {
void bar() {
#ifdef DEBUG
printf("I'm in bar\n");
#endif

By default, SWIG will interpret the #ifdef DEBUG statement. However, if you really wanted that code to actually go into the wrapper file, prefix the preprocessor directives with % like this:

%extend Foo {
void bar() {
$#ifdef DEBUG
printf("I'm in bar\n");
$#endif

SWIG will strip the extra % and leave the preprocessor directive in the code.
11.8 Preprocessor and Typemaps

Typemaps support a special attribute called noblock where the { ... } delimiters can be used, but the delimiters are not actually generated into the code. The effect is then similar to using "' or
%{ %} delimiters but the code is run through the preprocessor. For example:

#define SWIG_macro(CAST) (CAST)S$input
$typemap(in) Int {$1= SWIG_macro(int);}

might generate

{
argl=(int)jargl;
}

whereas

#define SWIG_macro(CAST) (CAST)$input
$typemap(in, noblock=1) Int {$1= SWIG_macro(int);}

might generate

argl=(int)jargl;

and

#define SWIG_macro(CAST) (CAST)S$input
$typemap(in) Int ${$1=SWIG_macro(int);%}

would generate

argl=SWIG_macro(int);

11.9 Viewing preprocessor output

Like many compilers, SWIG supports a -E command line option to display the output from the preprocessor. When the -E option is used, SWIG will not generate any wrappers. Instead the
results after the preprocessor has run are displayed. This might be useful as an aid to debugging and viewing the results of macro expansions.

11.10 The #error and #warning directives

SWIG supports the commonly used #warning and #error preprocessor directives. The #warning directive will cause SWIG to issue a warning then continue processing. The #error
directive will cause SWIG to exit with a fatal error. Example usage:

#error "This is a fatal error message"
#warning "This is a warning message"

The #error behaviour can be made to work like #warning if the ~cpperraswarn commandline option is used. Alternatively, the #pragma directive can be used to the same effect, for
example:

/* Modified behaviour: #error does not cause SWIG to exit with error */
#pragma SWIG cpperraswarn=1

/* Normal behaviour: #error does cause SWIG to exit with error */
#pragma SWIG cpperraswarn=0

12 SWIG library

11.8 Preprocessor and Typemaps

SWIG-4.2 Documentation

« The %include directive and library search path
« C arrays and pointers
o argcargv.i
o cpointer.i
o carrays.i
o cmalloc.i
o cdata.i
« C string handling
o Default string handling
o Passing binary data
o Using %newobject to release memory
o cstring.i
o STL/C++ library
o std::string
o std:string_view
o std:vector
o STL exceptions
o shared ptr smart pointer
= shared_ptr basics
= shared_ptr and inheritance
= shared_ptr and method overloading
» shared_ptr and templates
= shared ptr and directors
o unique_ptr smart pointer
o auto_ptr smart pointer
« Utility Libraries
o exception.i
o attribute.i
= Yattribute and C++ templates

To help build extension modules, SWIG is packaged with a library of support files that you can include in your own interfaces. These files often define new SWIG directives or provide utility
functions that can be used to access parts of the standard C and C++ libraries. This chapter provides a reference to the current set of supported library files.

Compatibility note: Older versions of SWIG included a number of library files for manipulating pointers, arrays, and other structures. Most these files are now deprecated and have been
removed from the distribution. Alternative libraries provide similar functionality. Please read this chapter carefully if you used the old libraries.

12.1 The %include directive and library search path

Library files are included using the $include directive. When searching for files, directories are searched in the following order:

1. The current directory

2. Directories specified with the -I command line option

3. ./swig_lib

4. SWIG library install location as reported by swig -swiglib, for example /usr/local/share/swig/1.3.30
5. On Windows, a directory Lib relative to the location of swig.exe is also searched.

Within directories mentioned in points 3-5, SWIG first looks for a subdirectory corresponding to a target language (e.g., python, tcl, etc.). If found, SWIG will search the language specific
directory first. This allows for language-specific implementations of library files.

You can ignore the installed SWIG library by setting the SWIG_LIB environment variable. Set the environment variable to hold an alternative library directory.

The directories that are searched are displayed when using -verbose commandline option.
12.2 C arrays and pointers

This section describes library modules for manipulating low-level C arrays and pointers. The primary use of these modules is in supporting C declarations that manipulate bare pointers such as
int *,double *, orvoid *.The modules can be used to allocate memory, manufacture pointers, dereference memory, and wrap pointers as class-like objects. Since these functions
provide direct access to memory, their use is potentially unsafe and you should exercise caution.

12.2.1 argcargv.i

The argcargv.i library is a simple library providing multi-argument typemaps for handling C argc argv command line argument C string arrays. The argc parameter contains the argument
count and argv contains the argument vector array.

This library provides the following multi-argument typemap:
(int ARGC, char **ARGV)

Apply this multi-argument typemap to your use case, for example:

%apply (int ARGC, char **ARGV) { (size_t argc, const char **argv) }

int mainApp(size_t argc, const char **argv);

then from Ruby:

$args = ["myargl", "myarg2"]
mainApp(args);

12.2.2 cpointer.i

The cpointer. i module defines macros that can be used to used to generate wrappers around simple C pointers. The primary use of this module is in generating pointers to primitive
datatypes such as int and double.

spointer functions(type, name)
Generates a collection of four functions for manipulating a pointertype *:
type *new_name()
Creates a new object of type type and returns a pointer to it. In C, the object is created using calloc (). In C++, new is used.
type *copy_name(type value)

Creates a new object of type type and returns a pointer to it. An initial value is set by copying it from value. In C, the object is created using calloc (). In C++,
new is used.

12.1 The %include directive and library search path

107

SWIG-4.2 Documentation

type *delete name(type *obj)
Deletes an object type type.
void name_assign(type *obj, type value)
Assigns *obj = value.
type name value(type *obj)
Returns the value of *obj.
When using this macro, type may be any type and name must be a legal identifier in the target language. name should not correspond to any other name used in the interface file.

Here is a simple example of using $pointer functions():

%module example
%include "cpointer.i"

/* Create some functions for working with "int *" */
$pointer functions(int, intp);

/* A function that uses an "int *" */
void add(int x, int y, int *result);

Now, in Python:

>>> import example

>>> ¢ = example.new_intp() # Create an "int" for storing result
>>> example.add(3, 4, c) # Call function

>>> example.intp value(c) # Dereference

7

>>> example.delete_intp(c) # Delete

spointer class(type, name)

Wraps a pointer of type * inside a class-based interface. This interface is as follows:

struct name {

name () ; // Create pointer object
~name(); // Delete pointer object
void assign(type value); // Assign value
type value(); // Get value
type *cast(); // Cast the pointer to original type
static name *frompointer(type *); // Create class wrapper from existing
// pointer
}i

When using this macro, type is restricted to a simple type name like int, float, or Foo. Pointers and other complicated types are not allowed. name must be a valid identifier not
already in use. When a pointer is wrapped as a class, the "class" may be transparently passed to any function that expects the pointer.

If the target language does not support proxy classes, the use of this macro will produce the example same functions as $pointer_functions() macro.
It should be noted that the class interface does introduce a new object or wrap a pointer inside a special structure. Instead, the raw pointer is used directly.

Here is the same example using a class instead:

%module example
%include "cpointer.i"

/* Wrap a class interface around an "int *" */
$pointer class(int, intp);

/* A function that uses an "int *" */
void add(int x, int y, int *result);

Now, in Python (using proxy classes)

>>> import example

>>> ¢ = example.intp() # Create an "int" for storing result
>>> example.add(3, 4, c) # Call function

>>> c.value() # Dereference

7

Of the two macros, spointer_class is probably the most convenient when working with simple pointers. This is because the pointers are access like objects and they can be easily
garbage collected (destruction of the pointer object destroys the underlying object).

$pointer_cast(typel, type2, name)

Creates a casting function that converts typel to type2 . The name of the function isname. For example:

$pointer cast(int *, unsigned int *, int_to_uint);

In this example, the function int_to_uint () would be used to cast types in the target language.
Note: None of these macros can be used to safely work with strings (char * orchar **).
Note: When working with simple pointers, typemaps can often be used to provide more seamless operation.
12.2.3 carrays.i

This module defines macros that assist in wrapping ordinary C pointers as arrays. The module does not provide any safety or an extra layer of wrapping--it merely provides functionality for
creating, destroying, and modifying the contents of raw C array data.

12.1 The %include directive and library search path

SWIG-4.2 Documentation

%array_functions(type, name)
Creates four functions.
type *new_name(size_t nelements)
Creates a new array of objects of type type. In C, the array is allocated using calloc (). In C++,new [] is used.
type *delete_name(type *ary)
Deletes an array. In C, free() is used. In C++,delete [] is used.
type name_getitem(type *ary, size t index)
Returns the value ary[index].
void name_setitem(type *ary, size_t index, type value)
Assigns ary[index] = value.
When using this macro, type may be any type and name must be a legal identifier in the target language. name should not correspond to any other name used in the interface file.

Here is an example of sarray_functions (). Suppose you had a function like this:

void print_array(double x[10]) {
int ij;
for (i = 0; i < 10; i++) {
printf("[%d] = %g\n", i, x[i]);
}

To wrap it, you might write this:

%module example

%include "carrays.i"
$array_functions(double, doubleArray);

void print_array(double x[10]);

Now, in a scripting language, you might write this:

a = new_doubleArray(10) # Create an array
for i in range(0, 10):

doubleArray_setitem(a, i, 2 * i) # Set a value
print_array(a) # Pass to C
delete_doubleArray(a) # Destroy array

%array_class(type, name)

Wraps a pointer of type * inside a class-based interface. This interface is as follows:

struct name {

name(size_t nelements); // Create an array

~name(); // Delete array

type getitem(size_t index); // Return item

void setitem(size_t index, type value); // Set item

type *cast(); // Cast to original type
static name *frompointer(type *); // Create class wrapper from

// existing pointer

When using this macro, type is restricted to a simple type name like int or float. Pointers and other complicated types are not allowed. name must be a valid identifier not already
in use. When a pointer is wrapped as a class, it can be transparently passed to any function that expects the pointer.

When combined with proxy classes, the $array_class () macro can be especially useful. For example:

%module example
%include "carrays.i"
%array_class(double, doubleArray);

void print_array(double x[10]);

Allows you to do this:

import example
c = example.doubleArray(10) # Create double[10]
for i in range(0, 10):

c[i] = 2 * i # Assign values
example.print_array(c) # Pass to C

Note: These macros do not encapsulate C arrays inside a special data structure or proxy. There is no bounds checking or safety of any kind. If you want this, you should consider using a
special array object rather than a bare pointer.

Note: sarray_functions() and $array_class() should not be used with types of char orchar *. SWIG's default handling of these types is to handle them as character strings and
the two macros do not do enough to change this.

12.2.4 cmalloc.i
This module defines macros for wrapping the low-level C memory allocation functions malloc (), calloc(), realloc(), and free().

¢malloc(type [, name=type])

12.1 The %include directive and library search path

SWIG-4.2 Documentation

Creates a wrapper around malloc () with the following prototype:

type *malloc_name(int nbytes = sizeof(type));

If type is void, then the size parameternbytes is required. The name parameter only needs to be specified when wrapping a type that is not a valid identifier (e.g., " int *",
"double **" etc.).

%calloc(type [, name=type])

Creates a wrapper around calloc () with the following prototype:

type *calloc_name(int nobj =1, int sz = sizeof(type));

If type is void, then the size parametersz is required.
%realloc(type [, name=type])

Creates a wrapper around realloc () with the following prototype:

type *realloc_name(type *ptr, int nitems);

Note: unlike the C realloc (), the wrapper generated by this macro implicitly includes the size of the corresponding type. For example, realloc_int(p, 100) reallocates p so
that it holds 100 integers.

%free(type [, name=type])

Creates a wrapper around free () with the following prototype:

void free_name(type *ptr);

%sizeof (type [, name=type])

Creates the constant:

%constant int sizeof_ name = sizeof(type);

%allocators(type [, name=type])
Generates wrappers for all five of the above operations.

Here is a simple example that illustrates the use of these macros:

// SWIG interface
%module example
%include "cmalloc.i"

gmalloc(int);
%free(int);

gmalloc(int *, intp);
%free(int *, intp);

%allocators(double);

Now, in a script:

>>> from example import *
>>> a = malloc int()

>>> a -
'_000efa70_p_ int'

>>> free int(a)

>>> b = malloc_intp()

>>> b

'_000efb20_p p_int'

>>> free intp(b)

>>> ¢ = calloc_double(50)
>>> ¢

'_000fab98_p double’

>>> ¢ = realloc_double(100000)
>>> free_double(c)

>>> print sizeof double

12.2.5 cdata.i

The cdata. i module defines functions for converting raw C data to and from strings in the target language. The primary applications of this module would be packing/unpacking of binary data
structures---for instance, if you needed to extract data from a buffer. The target language must support strings with embedded binary data in order for this to work.

const char *cdata(void *ptr, size_t nbytes)
Converts nbytes of data atptr into a string. ptr can be any pointer.
void memmove(void *ptr, const char *s)

Copies all of the string data in s into the memory pointed to by ptr. The string may contain embedded NULL bytes. This is actually a wrapper to the standard C library memmove
function, which is declared as void memmove (void *ptr, const void *src, size_t n).The src and length n parameters are extracted from the language specific string s
in the underlying wrapper code.

One use of these functions is packing and unpacking data from memory. Here is a short example:

12.1 The %include directive and library search path

SWIG-4.2 Documentation

// SWIG interface
%module example
%include "carrays.i"
%include "cdata.i"

$array_class(int, intArray);

Python example:

>>> a = intArray(10)

>>> for i in range(0, 10):

o a[i] = i

>>> b = cdata(a, 40)

>>> b
'\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04
\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\t"
>>> ¢ = intArray(10)

>>> memmove(c, b)

>>> print c[4]

4

>>>

Since the size of data is not always known, the following macro is also defined:
%cdata(type [, name=type])

Generates the following function for extracting C data for a given type.

char *cdata_name(type* ptr, int nitems)

nitems is the number of items of the given type to extract.

Note: These functions provide direct access to memory and can be used to overwrite data. Clearly they are unsafe.
12.3 C string handling

A common problem when working with C programs is dealing with functions that manipulate raw character data using char *. In part, problems arise because there are different

interpretations of char *---it could be a NULL-terminated string or it could point to binary data. Moreover, functions that manipulate raw strings may mutate data, perform implicit memory

allocations, or utilize fixed-sized buffers.

The problems (and perils) of using char * are well-known. However, SWIG is not in the business of enforcing morality. The modules in this section provide basic functionality for manipulating

raw C strings.
12.3.1 Default string handling

Suppose you have a C function with this prototype:

char *foo(char *s);

The default wrapping behavior for this function is to set s to a raw char * that refers to the internal string data in the target language. In other words, if you were using a language like Tcl, and

you wrote this,

% foo Hello

then s would point to the representation of "Hello" inside the Tcl interpreter. When returning a char *, SWIG assumes that it is a NULL-terminated string and makes a copy of it. This gives

the target language its own copy of the result.

There are obvious problems with the default behavior. First, since a char * argument points to data inside the target language, it is NOT safe for a function to modify this data (doing so may

corrupt the interpreter and lead to a crash). Furthermore, the default behavior does not work well with binary data. Instead, strings are assumed to be NULL-terminated.
12.3.2 Passing binary data

If you have a function that expects binary data,

size_t parity(char *str, size_t len, size_t initial);

you can wrap the parameters (char *str, size_t len) as a single argument using a typemap. Just do this:

%apply (char *STRING, size_t LENGTH) { (char *str, size_t len) };

size_t parity(char *str, size_t len, size_t initial);

Now, in the target language, you can use binary string data like this:

>>> s = "H\x00\x15eg\x09\x20"
>>> parity(s, 0)

In the wrapper function, the passed string will be expanded to a pointer and length parameter. The (char *STRING, int LENGTH) multi-argument typemap is also available in addition to

(char *STRING, size_t LENGTH)
12.3.3 Using %newobject to release memory

If you have a function that allocates memory like this,

char *foo() {
char *result = (char *) malloc(...);

12.3 C string handling

SWIG-4.2 Documentation

return result;

}

then the SWIG generated wrappers will have a memory leak--the returned data will be copied into a string object and the old contents ignored.

To fix the memory leak, use the $newobject directive.

%newobject foo;

char *foo();

This will release the result if the appropriate target language support is available. SWIG provides the appropriate "newfree" typemap for char * so that the memory is released, however, you
may need to provide your own "newfree" typemap for other types. See Object ownership and %newobject for more details.

12.3.4 cstring.i

The cstring. i library file provides a collection of macros for dealing with functions that either mutate string arguments or which try to output string data through their arguments. An example
of such a function might be this rather questionable implementation:

void get_path(char *s) {
// Potential buffer overflow---uh, oh.
sprintf(s, "%s/%s", base_directory, sub_directory);
}
// Somewhere else in the C program
{
char path[1024];
get_path(path);

(Off topic rant: If your program really has functions like this, you would be well-advised to replace them with safer alternatives involving bounds checking).
The macros defined in this module all expand to various combinations of typemaps. Therefore, the same pattern matching rules and ideas apply.

%cstring_bounded_output(parm, maxsize)

Turns parameter parm into an output value. The output string is assumed to be NULL-terminated and smaller than maxsize characters. Here is an example:

%cstring_bounded output(char *path, 1024);

void get_path(char *path);

In the target language:

>>> get_path()
/home/beazley/packages/Foo/Bar
>>>

Internally, the wrapper function allocates a small buffer (on the stack) of the requested size and passes it as the pointer value. Data stored in the buffer is then returned as a function
return value. If the function already returns a value, then the return value and the output string are returned together (multiple return values). If more than maxsize bytes are written,
your program will crash with a buffer overflow!

%cstring_chunk_output(parm, chunksize)

Turns parameter parm into an output value. The output string is always chunksize and may contain binary data. Here is an example:

%$cstring_chunk output(char *packet, PACKETSIZE);

void get_packet(char *packet);

In the target language:

>>> get packet()

'\xa9Y:\x£6\xd7\xel\x87\xdbH;y\x97\x7£\xd3\x99\x14V\xec\x06\xea\xa2\x88"
>>>

This macro is essentially identical to $cstring_bounded_output . The only difference is that the result is alwayschunksize characters. Furthermore, the result can contain
binary data. If more than maxsize bytes are written, your program will crash with a buffer overflow!

%cstring_bounded_mutable(parm, maxsize)

Turns parameter parm into a mutable string argument. The input string is assumed to be NULL-terminated and smaller than maxsize characters. The output string is also assumed
to be NULL-terminated and less than maxsize characters.

%$cstring_bounded mutable(char *ustr, 1024);

void make_upper(char *ustr);

In the target language:

>>> make_upper("hello world")
'"HELLO WORLD'
>>>

Internally, this macro is almost exactly the same as $cstring_bounded_output. The only difference is that the parameter accepts an input value that is used to initialize the
internal buffer. It is important to emphasize that this function does not mutate the string value passed---instead it makes a copy of the input value, mutates it, and returns it as a result.

12.3 C string handling 12

SWIG-4.2 Documentation

If more than maxsize bytes are written, your program will crash with a buffer overflow!

%cstring_mutable(parm [, expansion])

Turns parameter parm into a mutable string argument. The input string is assumed to be NULL-terminated. An optional parameter expansion specifies the number of extra

characters by which the string might grow when it is modified. The output string is assumed to be NULL-terminated and less than the size of the input string plus any expansion
characters.

%cstring_mutable(char *ustr);

void make upper(char *ustr);

%cstring_mutable(char *hstr, HEADER_SIZE);

void attach_header(char *hstr);

In the target language:

>>> make_ upper("hello world")
'HELLO WORLD'

>>> attach_header("Hello world")
‘header: Hello world'

>>>

This macro differs from $cstring_bounded mutable() in that a buffer is dynamically allocated (on the heap using malloc/new). This buffer is always large enough to store a
copy of the input value plus any expansion bytes that might have been requested. It is important to emphasize that this function does not directly mutate the string value passed---

instead it makes a copy of the input value, mutates it, and returns it as a result. If the function expands the result by more than expansion extra bytes, then the program will
crash with a buffer overflow!

%cstring_output_maxsize(parm, maxparm)

This macro is used to handle bounded character output functions where both a char * and a maximum length parameter are provided. As input, a user simply supplies the maximum
length. The return value is assumed to be a NULL-terminated string.

%cstring_output_maxsize(char *path, int maxpath);

void get_path(char *path, int maxpath);

In the target language:

>>> get _path(1024)
' /home/beazley/Packages/Foo/Bar'
>>>

This macro provides a safer alternative for functions that need to write string data into a buffer. User supplied buffer size is used to dynamically allocate memory on heap. Results are
placed into that buffer and returned as a string object.

%cstring_output_withsize(parm, maxparm)

This macro is used to handle bounded character output functions where both a char * and a pointer int * are passed. Initially, the int * parameter points to a value containing

the maximum size. On return, this value is assumed to contain the actual number of bytes. As input, a user simply supplies the maximum length. The output value is a string that may
contain binary data.

%cstring_output_withsize(char *data, int *maxdata);

void get_data(char *data, int *maxdata);

In the target language:

>>> get_data(1024)
'x627388912"'

>>> get_data(1024)
'Xyzzy'

>>>

This macro is a somewhat more powerful version of $cstring output_chunk(). Memory is dynamically allocated and can be arbitrary large. Furthermore, a function can control
how much data is actually returned by changing the value of the maxparm argument.

%cstring_output_allocate(parm, release)

This macro is used to return strings that are allocated within the program and returned in a parameter of type char **. For example:

void foo(char **s) {
*s = (char *) malloc(64);
sprintf(*s, "Hello world\n");

}

The returned string is assumed to be NULL-terminated. release specifies how the allocated memory is to be released (if applicable). Here is an example:

%cstring_output_allocate(char **s, free(*$1));

void foo(char **s);

In the target language:

>>> foo()
'Hello world\n'
>>>

12.3 C string handling

us3

SWIG-4.2 Documentation

%cstring_output_allocate_size(parm, szparm, release)

This macro is used to return strings that are allocated within the program and returned in two parameters of type char ** and int *. For example:

void foo(char **s, int *sz) {
*s = (char *) malloc(64);
*sz = 64;
// Write some binary data

The returned string may contain binary data. release specifies how the allocated memory is to be released (if applicable). Here is an example:

%cstring_output_allocate_size(char **s, int *slen, free(*$1));

void foo(char **s, int *slen);

In the target language:

>>> foo()
'\xa97:\x£f6\xd7\xel\x87\xdbH;y\x97\x7£\xd3\x99\x14V\xec\x06\xea\xa2\x88"'
>>>

This is the safest and most reliable way to return binary string data in SWIG. If you have functions that conform to another prototype, you might consider wrapping them with a helper
function. For example, if you had this:

char *get_data(int *len);

You could wrap it with a function like this:

void my_get_data(char **result, int *len) {
*result = get_data(len);

}

Comments:
« Support for the cstring. i module depends on the target language. Not all SWIG modules currently support this library.
« Reliable handling of raw C strings is a delicate topic. There are many ways to accomplish this in SWIG. This library provides support for a few common techniques.

« If used in C++, this library uses new and delete [] for memory allocation. If using C, the library uses malloc () and free().
« Rather than manipulating char * directly, you might consider using a special string structure or class instead.

12.4 STL/C++ library

The library modules in this section provide access to parts of the standard C++ library including the STL. SWIG support for the STL is an ongoing effort. Support is quite comprehensive for
some language modules but some of the lesser used modules do not have quite as much library code written.

The following table shows which C++ classes are supported and the equivalent SWIG interface library file for the C++ library.

C++ class C++ Library file SWIG Interface library
file

std::array (C++11) array std_array.i

std::auto_ptr memory std_auto_ptr.i

std::complex complex std_complex.i

std::deque deque std_deque.i

std::list [list std_list.i

std::map map std_map.i

std::multimap (C++11) multimap std_multimap.i

std::multiset (C++11) multiset std_multiset.i

std::pair utility std_pair.i

std::set set std_set.i

std::shared_ptr (C++11) shared_ptr std_shared_ptr.i

std::string string std_string.i

std::string_view (C++17) string_view std_string_view.i

std::unordered_map (C++11) unordered_map std_unordered_map.i

std::unordered_multimap (C++11)|unordered_multimap||std_unordered_multimap.i

std::unordered_multiset (C++11) |[unordered_multiset |std_unordered_multiset.i

std::unordered_set (C++11) unordered_set std_unordered_set.i

std::vector vector std_vector.i

std::wstring wstring std_wstring.i

The list is by no means complete; some language modules support a subset of the above and some support additional STL classes. Please look for the library files in the appropriate language
library directory.

12.4.1 std::string

The std_string.i library provides typemaps for converting C++ std: : string objects to and from strings in the target scripting language. For example:

%module example
%include "std_string.i"

std::string foo();
void bar(const std::string &x);

12.4 STL/C++ library

SWIG-4.2 Documentation

In the target language:

x = foo(); # Returns a string object
bar("Hello World"); # Pass string as std::string

A common problem that people encounter is that of classes/structures containing a std: : string. This can be overcome by defining a typemap. For example:

%module example
%$include "std_string.i"

%apply const std::string& {std::string* foo};

struct my_struct
{

std::string foo;
}i

In the target language:

x = my_struct();
x.foo = "Hello World"; # assign with string
print x.foo; # print as string

This module only supports types std: :string and const std::string &. Pointers and non-const references are left unmodified and returned as SWIG pointers.

This library file is fully aware of C++ namespaces. If you export std: : string or rename it with a typedef, make sure you include those declarations in your interface. For example:

%module example
%$include "std_string.i"

using namespace std;
typedef std::string String;

void foo(string s, const String &t); // std_string typemaps still applied

12.4.2 std::string_view

The std_string_view. i library provides typemaps for converting C++17 std: :string_view objects to and from strings in the target scripting language. For example:

$module example
%$include "std_string view.i"

std::string_view foo();
void bar(std::string view x);

In the target language:

x = foo(); # Returns a string object
bar("Hello World"); # Pass string as std::string view

For target languages for which SWIG supports directors, directorout typemaps are provided forstd: :string_view, but these require extra care to use safely. The issue is that returning
std::string_view effectively returns a pointer to string data but doesn't own the pointed to data. For target languages where there isn't a native narrow string representation (e.g. C#, Java)
astatic std::stringis used to cache the data, which works but isn't thread/reentrant safe. For target languages where there is a native narrow string representation SWIG will return a
std::string_view pointing to that data, so you need to store the string to return somewhere which will persist for the lifetime the caller needs (e.g. put it in a member variable) - you can't
return a temporary target language string. In both cases SWIG will issue a warning by default.

12.4.3 std::vector

The std_vector. 1 library provides support for the C++std: : vector class in the STL. Using this library involves the use of the $template directive. All you need to do is to instantiate
different versions of vector for the types that you want to use. For example:

gmodule example
%$include "std_vector.i"

namespace std {
%template(vectori) vector<int>;
%template(vectord) vector<double>;
}i

When a template vector<x> is instantiated a number of things happen:

A class that exposes the C++ APl is created in the target language . This can be used to create objects, invoke methods, etc. This class is currently a subset of the real STL vector class.
Input typemaps are defined forvector<x>, const vector<X> &, andconst vector<x> *. For each of these, a pointer vector<x> * may be passed or a native list object in the
target language.

An output typemap is defined forvector<x>. In this case, the values in the vector are expanded into a list object in the target language.

For all other variations of the type, the wrappers expect to receive a vector<x> * object in the usual manner.

An exception handler forstd: :out_of_range is defined.

Optionally, special methods for indexing, item retrieval, slicing, and element assignment may be defined. This depends on the target language.

To illustrate the use of this library, consider the following functions:

/* File : example.h */

#include <vector>
#include <algorithm>
#include <functional>
#include <numeric>

12.4 STL/C++ library

15

SWIG-4.2 Documentation

double average(std::vector<int> v) {
return std::accumulate(v.begin(), v.end(), 0.0)/v.size();

}

std::vector<double> half(const std::vector<double>& v) {
std::vector<double> w(Vv);
for (unsigned int i=0; i<w.size(); i++)
w[i] /= 2.0;

return w;
}
void halve_ in place(std::vector<double>& v) {
for (std::vector<double>::iterator it = v.begin(); it != v.end(); ++it)
*it /= 2.0;

To wrap with SWIG, you might write the following:

%module example

3{

#include "example.h"
%}

%$include "std vector.i"
// Instantiate templates used by example
namespace std {
%template(IntVector) vector<int>;
%template(DoubleVector) vector<double>;

}

// Include the header file with above prototypes
%include "example.h"

Now, to illustrate the behavior in the scripting interpreter, consider this Python example:

>>> from example import *

>>> iv = IntVector(4) # Create an vector<int>
>>> for i in range(0, 4):

600 iv[i] = i

>>> average(iv) # Call method

1L515)

>>> average([0, 1, 2, 3]) # Call with list

1.5

>>> half([1, 2, 3]) # Half a list

(0.5, 1.0, 1.5)
>>> halve_in place([1l, 2, 3]) # Oops
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: Type error. Expected _p std_vectorTdouble t
>>> dv = DoubleVector(4)
>>> for i in range(0, 4):

e dv[i] = i

>>> halve_in_place(dv) # Ok
>>> for i in dv:

000 print i

0.0

0.5

1.0

1L515)

>>> dv[20] = 4.5
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "example.py", line 81, in _ setitem _
def _ setitem (*args): return apply(examplec.DoubleVector setitem , args)
IndexError: vector index out of range
>>>

This library module is fully aware of C++ namespaces. If you use vectors with other names, make sure you include the appropriate using or typedef directives. For example:

%$include "std vector.i"
namespace std {
$template(IntVector) vector<int>;

}

using namespace std;
typedef std::vector Vector;

void foo(vector<int> *x, const Vector &x);

Note: This module makes use of several advanced SWIG features including templatized typemaps and template partial specialization. If you are trying to wrap other C++ code with templates,
you might look at the code contained in std_vector. i. Alternatively, you can show them the code if you want to make their head explode.

Note: This module is defined for all SWIG target languages. However argument conversion details and the public APl exposed to the interpreter vary.
12.4.4 STL exceptions
Many of the STL wrapper functions add parameter checking and will throw a language dependent error/exception should the values not be valid. The classic example is array bounds checking.

The library wrappers are written to throw a C++ exception in the case of error. The C++ exception in turn gets converted into an appropriate error/exception for the target language. By and
large this handling should not need customising, however, customisation can easily be achieved by supplying appropriate "throws" typemaps. For example:

gmodule example
%$include "std_vector.i
%typemap(throws) std::out_of range {

12.4 STL/C++ library

SWIG-4.2 Documentation

// custom exception handler

%template(VectInt) std::vector<int>;

The custom exception handler might, for example, log the exception then convert it into a specific error/exception for the target language.

When using the STL it is advisable to add in an exception handler to catch all STL exceptions. The $exception directive can be used by placing the following code before any other methods
or libraries to be wrapped:

%include "exception.i"

%exception {
try {
$action
} catch (const std::exception& e) {
SWIG_exception(SWIG_RuntimeError, e.what());
}

Any thrown STL exceptions will then be gracefully handled instead of causing a crash.
12.4.5 shared_ptr smart pointer
12.4.5.1 shared_ptr basics

Some target languages have support for handling the shared_ptr reference counted smart pointer. This smart pointer is available in the standard C++11 library as std: :shared_ptr. It was
alsoin TR1 as std::trl::shared_ptr before it was fully standardized. Support for the widely used boost: : shared_ptr is also available.

In order to use std: :shared_ptr, thestd_shared_ptr. i library file should be included:

%$include <std_shared ptr.i>

The pre-standard std: :trl::shared_ptr can be used by including the following macro before including the std_shared_ptr. i library file:

#define SWIG_SHARED_PTR_SUBNAMESPACE trl
%$include <std_shared ptr.i>

In order to use boost : :shared_ptr, theboost_shared_ptr. i library file should be included:

%$include <boost_shared ptr.i>

You can only use one of these variants of shared_ptr in your interface file at a time. All three variants must be used in conjunction with the $shared_ptr(T) macro, where T is the underlying
pointer type equating to usage shared_ptr<T>. The type T must be non-primitive. A simple example demonstrates usage:

%module example
%$include <boost_shared ptr.i>
%$shared_ptr(Intvalue)

%inline %{
#include <boost/shared ptr.hpp>

struct IntvValue {

int value;

IntValue(int v) : value(v) {}
Yi

static int extractValue(const IntValue &t) {
return t.value;

}

static int extractValueSmart(boost::shared ptr<IntValue> t) {
return t->value;

}

%}

Note that the $shared_ptr(Intvalue) declaration occurs after the inclusion of the boost_shared_ptr. i library which provides the macro and, very importantly, before any usage or
declaration of the type, IntValue. The $shared_ptr macro provides, a few things for handling this smart pointer, but mostly a number of typemaps. These typemaps override the default
typemaps so that the underlying proxy class is stored and passed around as a pointer to a shared_ptr instead of a plain pointer to the underlying type. This approach means that any
instantiation of the type can be passed to methods taking the type by value, reference, pointer or as a smart pointer. The interested reader might want to look at the generated code, however,
usage is simple and no different handling is required from the target language. For example, a simple use case of the above code from Java would be:

IntValue iv = new IntValue(1234);

int vall = example.extractValue(iv);

int val2 = example.extractValueSmart(iv);
System.out.println(vall + " " + val2);

12.4.5.2 shared_ptr and inheritance

The shared_pitr library works quite differently to SWIG's normal, but somewhat limited, smart pointer handling. The shared_ptr library does not generate extra wrappers, just for smart pointer
handling, in addition to the proxy class. The normal proxy class including inheritance relationships is generated as usual. The only real change introduced by the $shared_ptr macro is that
the proxy class stores a pointer to the shared_ptr instance instead of a raw pointer to the instance. A proxy class derived from a base which is being wrapped with shared_ptr can and must be
wrapped as a shared_ptr too. In other words all classes in an inheritance hierarchy must all be used with the $shared_ptr macro. For example the following code can be used with the base
class shown earlier:

$shared_ptr(DerivedIntValue)

%inline %{

struct DerivedIntValue : IntValue {
DerivedIntValue(int value) : IntValue(value) {}

12.4 STL/C++ library

SWIG-4.2 Documentation

A shared_ptr of the derived class can now be passed to a method where the base is expected in the target language, just as it can in C++:

DerivedIntValue div = new DerivedIntValue(5678);
int val3 = example.extractValue(div);
int val4 = example.extractValueSmart(div);

If the $shared_ptr macro is omitted for any class in the inheritance hierarchy, SWIG will warn about this and the generated code may or may not result in a C++ compilation error. For
example, the following input:

%$include "boost_ shared ptr.i"
%shared ptr(Parent);

%inline %{
#include <boost/shared ptr.hpp>
struct GrandParent {
virtual ~GrandParent() {}

}i

struct Parent : GrandParent {
virtual ~Parent() {}
}i

struct Child : Parent {
virtual ~Child() {}
Yi
%}

warns about the missing smart pointer information:

example.i:12: Warning 520: Base class 'GrandParent' of 'Parent' is not similarly marked as a smart pointer.
example.i:16: Warning 520: Derived class 'Child' of 'Parent' is not similarly marked as a smart pointer.

Adding the missing $shared_ptr macros will fix this:

%$include <boost_shared ptr.i>
%shared ptr(GrandParent);
%$shared_ptr(Parent);
$shared_ptr(Child);

... as before ...

12.4.5.3 shared_ptr and method overloading

A C++ compiler can disambiguate a method overloaded by a shared_ptr and one using the raw underlying type. For example, either one of these methods can be called in C++:

int age(std::shared ptr<GrandParent> num);
int age(GrandParent& num);

When wrapped by SWIG, disambiguation is not possible using the overloaded names as there is just one equivalent type (GrandParent) in the target language. SWIG will choose to wrap
just the first method by default. Ambiguity in overloading discusses ways to control which method(s) gets wrapped using $ignore or $rename. For the interested reader, SWIG detects that
they are equivalent types via the typecheck typemaps in the shared_ptr library.

12.4.5.4 shared_ptr and templates

The $shared_ptr macro should be used for all the required instantiations of the template before each of the $template instantiations. For example, consider number . h containing the
following illustrative template:

#include <memory>

template<int N> struct Number {

int num;

Number() : num(N) {}

static std::shared_ptr<Number<N>> make() { return std::make_shared<Number<N>>(); }
}i

The SWIG code below shows the required ordering:

%$include <std_shared ptr.i>

%shared ptr(Number<10>);
%shared_ptr(Number<42>);

%4

#include "number.h"
%}
%include "number.h"

%template(Numberl10) Number<10>;
%template(Number42) Number<42>;

12.4.5.5 shared_ptr and directors
The languages that support shared_ptr also have support for using shared_ptr with directors.

12.4.6 unique_ptr smart pointer

12.4 STL/C++ library

SWIG-4.2 Documentation

The std_unique_ptr. i library file provides SWIG's unique_ptr support. It defines typemaps and a macro, $unique_ptr(T) , to use for handlingstd: :unique_ptr<T> for a type T. The
type T must be non-primitive. This macro should be used before any code declaring or using type T. Ordering requirements for using this smart pointer macro are the same as the equivalent
$shared_ptr(T) macro covered in the previous section.

Example usage of a std: :unique_ptr being returned from a function is shown below.

%$include <std _unique ptr.i>

%unique_ptr(Klass)

%inline %{

#include <memory>

class Klass {

public:
// Factory function creating objects of this class:
static std::unique_ptr<Klass> Create(int value) {

return std::unique_ptr<Klass>(new Klass(value));

}
int getValue() const { return m value; }

private:
Klass(int value) : m value(value) {}
int m_value;

}i

%}

The returned objects can be used naturally from the target language, e.g. from C#:

Klass k = Klass.Create(17);
int value = k.getValue();

The implementation simply calls std: :unique_ptr::release() to obtain the underlying raw pointer. The pointer is then used to create a target language proxy class in the same way that
SWIG handles a C++ function returning a class by value. The target language proxy class then owns the memory pointed to by the raw pointer and memory handling is identical to normal
SWIG proxy class handling of the underlying C++ memory. Note that an object returned by value is first copied/moved from the stack onto the heap in order to obtain a raw pointer on the
heap, whereas the underlying raw pointer in std: :unique_ptr already points to an object the heap.

Note that the implementation is quite different to the std: : shared_ptr smart pointer, where the proxy class manages the underlying C++ memory as a pointer to a shared_ptr instead of a
plain raw pointer.

A possibly less common usage of this smart pointer is as a parameter to a function. When used like this it indicates that memory usage of the object pointed to by the underlying pointer is
transferred to the function being called. The code that SWIG generates assumes this happens. First, it is assumed that a proxy class already owns the underlying C++ object and is used to
pass the object to the C++ function being called. Second, the ownership is transferred from the proxy class to the C++ function being called and lifetime is then controlled by the function.
Finally, it is assumed the lifetime of the object may not last beyond returning from the C++ function and hence the proxy class can no longer be used.

Consider expanding the example above with a function that takes a std: :unique_ptr as follows:

void take(std::unique ptr<Klass>);

and use from C#:

Klass k = Klass.Create(17); // create an instance of Klass any way you like

int value = k.getValue(); // ok

example.take(k); // memory ownership passes from C# layer to C++ layer
int v = k.getValue(); // don't do this - invalid use of k

Attempts to use k after the ownership has been passed into the take function should not be attempted. The implementation sets the proxy class to an invalid state by setting the class's
underlying C++ pointer to null after the return from the take function. Subsequent use of an invalid proxy class instance is very much dependent on the implementation in the target language
and ranges from a segfault to giving a nice error. Consider implementing additional checks via the ‘check' typemap.

Attempts to pass ownership from a proxy class to a std: :unique parameter more than once will result in a "Cannot release ownership as memory is not owned" exception. For example, if
example.take (k) in the example above is called twice.

Compatibility note: Support for std: :unique_ptr was added in SWIG-4.1.0.
12.4.7 auto_ptr smart pointer
While std: :auto_ptr is deprecated in C++11, some existing code may still be using it. SWIG provides support for this class which is nearly identical to std: :unique_ptr.
The std_auto_ptr. i library file provides SWIG's auto_ptr support. It defines typemaps and a macro, $auto_ptr(T), to use for handling std: :auto_ptr<T> for atype T. The type T
must be non-primitive. This macro should be used before any code declaring or using type T. Ordering requirements for using this smart pointer macro are the same as the equivalent

$shared ptr(T) and $unique_ptr macros covered in the previous two sections.

Example usage of a std: :auto_ptr being returned from a function is shown below.

%include <std_auto_ptr.i>

%auto_ptr(Klass)

%inline %{

#include <memory>

class Klass {

public:
// Factory function creating objects of this class:
static std::auto_ptr<Klass> Create(int value) {

return std::auto_ptr<Klass>(new Klass(value));

}
int getValue() const { return m value; }

private:
Klass(int value) : m_value(value) {}
int m_value;

}i

%}

12.4 STL/C++ library

19

SWIG-4.2 Documentation

The returned objects can be used naturally from the target language, e.g. from C#:

Klass k = Klass.Create(17);
int value = k.getValue();

The implementation simply calls std: :auto_ptr::release() to obtain the underlying raw pointer. That is, it works the same way covered in the previous section for std: :unique_ptr.

Input parameters also work the same way as std: :unique_ptr covered in the previous section.
12.5 Utility Libraries

12.5.1 exception.i

The exception. i library provides a language-independent function for raising a run-time exception in the target language. This library is largely used by the SWIG library writers. If possible,
use the error handling scheme available to your target language as there is greater flexibility in what errors/exceptions can be thrown.

SWIG_exception(int code, const char *message)

Raises an exception in the target language. code is one of the following symbolic constants:

SWIG_MemoryError
SWIG_IOError
SWIG_RuntimeError
SWIG_IndexError
SWIG_TypeError
SWIG_DivisionByZero
SWIG_OverflowError
SWIG_SyntaxError
SWIG_ValueError
SWIG_SystemError

message is a string indicating more information about the problem.

The primary use of this module is in writing language-independent exception handlers. For example:

%include "exception.i"
%exception std::vector::getitem {
try {
Saction
} catch (std::out_of_ range& e) {
SWIG_exception(SWIG_IndexError, const_cast<char*>(e.what()));
}
}

12.5.2 attribute.i

The attribute library contains a set of macros to convert a pair of set/get methods into a "native" attribute/property.

Use sattribute when you have a pair of get/set methods to a primitive type like:

%include "attribute.i"
%attribute(A, int, a, get_a, set_a);

struct A {
int get_a() const;
void set_a(int aa);

}i

and you want to provide that variable as an attribute in the target language. This example only works for primitive types, not derived types. Now you can use the attributes like so (in Python):

x = A()
X.a = 3 # calls A::set_a(3)
print(x.a) # calls A::get_a() const

If you don't provide a 'set' method, a 'read-only" attribute is generated, ie, like:

$attribute(A, int, c, get c);

Use sattributeref when you have const/non-const reference access methods for primitive types or class/structs, like:

%attributeref (A, int, b);

struct A {
const int & b() const;
int & b();

Yi

%attributeref (B, int, c);
struct B {

int & c();
}i

Use the attributes like so (in Python):

x = A()
x.b = 3 # calls A::b()
print(x.b) # calls A::b() const

12.5 Utility Libraries

SWIG-4.2 Documentation

You can also use

%attributeref(Class, AttributeType, AttributeName, AccessorMethod)

if the internal C++ reference methods have a different name from the attribute you want, so

%attributeref (B, int, d, c);

is the same as the last example, but instead of the attribute 'c' being called 'c', it is called 'd".

Use sattribute?2 instead of $attribute to indicate that reference-pointer translation is required. Use $attribute2 instead of $attribute in cases like this:

%attribute2 (MyClass, MyFoo, Foo, GetFoo, SetFoo);
%inline %{
struct MyFoo {
int x;
Y
class MyClass {
MyFoo foo;
public:
MyFoo & GetFoo() { return foo; }
void SetFoo(const MyFoo &other) { foo = other; }
}i
%}

Here, the data type of the property is a wrapped type MyFoo and on the C++ side it is passed by reference. The problem is that the SWIG wrapper will pass around a pointer (MyFoo *) which
is not compatible with the reference type of the accessors (MyFoo &). Therefore, if you use 2attribute, you'll get an error from your C/C++ compiler. $attribute?2 translates between a
pointer and a reference to eliminate the error. In case you're confused, let's make it simple: just use $attribute at first, but if the C/C++ compiler gives an error while compiling the wrapper,

try sattribute2 instead.

NOTE: remember that if the type contains commas, such as std: :pair<int, int>, you need to use the macro like:

%attributeref (A, %arg(std::pair<int, int>), pval);

where $arg () 'normalizes’ the type to be understood as a single argument, otherwise the macro will get confused by the comma.

The 2attributeval is the same as $attribute, but should be used when the type is a class/struct (ie a non-primitive type) and when the get and set methods return/pass by value. The

following is very similar to the above example, but note that the access is by value rather than reference.

%attributeval (MyClassVal, MyFoo, ReadWriteFoo, GetFoo, SetFoo);
%attributeval (MyClassVal, MyFoo, ReadOnlyFoo, GetFoo);
%inline %{
class MyClassVal {
MyFoo foo;
public:
MyFoo GetFoo() { return foo; }
void SetFoo(MyFoo other) { foo = other; }
Yi
%}

The 2attributestring is the same as $attributeval, but should be used for string class types, which are unusual as they are a class on the C++ side, but normally an
immutable/primitive type in the target language. Example usage for std: : string:

%$include <std_string.i>
%attributestring(MyStringyClass, std::string, ReadWriteString, GetString, SetString);
%attributestring(MyStringyClass, std::string, ReadOnlyString, GetString);
%inline %{
class MyStringyClass {
std::string str;
public:
MyStringyClass(const std::string &val) : str(val) {}
std::string GetString() { return str; }
void SetString(std::string other) { str = other; }
}i
%}

The 2attributestring also works for class types that have $naturalvar turned on and so is also useful for shared_ptr which has $naturalvar turned onin$shared_ptr.
12.5.2.1 %attribute and C++ templates

gattribute and friends have to be used on fully specified classes. For example

%attributeref (A<int>, int, a);
%inline %{
template <class T> struct A {
T a() const;
void a(T &);
}i
%}

Note the use of a template-id (i.e., A<int> not A<T> or just A). This means that sattribute statements have to be repeated for any template-id that you want to use with $template.

13 Argument Handling

« The typemaps.i library

12.5 Utility Libraries

121

SWIG-4.2 Documentation

o Introduction
o Input parameters
o Output parameters
o Input/Output parameters
o Using different names
« Applying constraints to input values
o Simple constraint example
o Constraint methods
o Applying constraints to new datatypes

In Chapter 5, SWIG's treatment of basic datatypes and pointers was described. In particular, primitive types such as int and double are mapped to corresponding types in the target
language. For everything else, pointers are used to refer to structures, classes, arrays, and other user-defined datatypes. However, in certain applications it is desirable to change SWIG's
handling of a specific datatype. For example, you might want to return multiple values through the arguments of a function. This chapter describes some of the techniques for doing this.

13.1 The typemaps.i library

This section describes the typemaps. i library file--commonly used to change certain properties of argument conversion.
13.1.1 Introduction

Suppose you had a C function like this:

void add(double a, double b, double *result) {
*result = a + b;

}

From reading the source code, it is clear that the function is storing a value in the double *result parameter. However, since SWIG does not examine function bodies, it has no way to
know that this is the underlying behavior.

One way to deal with this is to use the typemaps. i library file and write interface code like this:

// Simple example using typemaps
%module example
%include "typemaps.i"

%apply double *OUTPUT { double *result };

%inline %{

extern void add(double a, double b, double *result);
%}

The %apply directive tells SWIG that you are going to apply a special type handling rule to a type. The "double *OUTPUT" specification is the name of a rule that defines how to return an
output value from an argument of type double *. This rule gets applied to all of the datatypes listed in curly braces-- in this case " double *result".

When the resulting module is created, you can now use the function like this (shown for Python):

>>> a = add(3, 4)
>>> print a

7

>>>

In this case, you can see how the output value normally returned in the third argument has magically been transformed into a function return value. Clearly this makes the function much easier
to use since it is no longer necessary to manufacture a special double * object and pass it to the function somehow.

Once a typemap has been applied to a type, it stays in effect for all future occurrences of the type and name. For example, you could write the following:

%module example
%include "typemaps.i"

%apply double *OUTPUT { double *result };

%inline %{

extern void add(double a, double b, double *result);
extern void sub(double a, double b, double *result);
extern void mul(double a, double b, double *result);
extern void div(double a, double b, double *result);
%}

In this case, the double *OUTPUT rule is applied to all of the functions that follow.

Typemap transformations can even be extended to multiple return values. For example, consider this code:

%include "typemaps.i"
%apply int *OUTPUT { int *width, int *height };

// Returns a pair (width, height)
void getwinsize(int winid, int *width, int *height);

In this case, the function returns multiple values, allowing it to be used like this:

>>> w, h = genwinsize(wid)
>>> print w

400

>>> print h

300

>>>

It should also be noted that although the $apply directive is used to associate typemap rules to datatypes, you can also use the rule names directly in arguments. For example, you could
write this:

13.1 The typemaps.i library

SWIG-4.2 Documentation

// Simple example using typemaps
%module example
%include "typemaps.i"

%4
extern void add(double a, double b, double *OUTPUT);
%}

extern void add(double a, double b, double *OUTPUT);

Typemaps stay in effect until they are explicitly deleted or redefined to something else. To clear a typemap, the $clear directive should be used. For example:

%clear double *result; // Remove all typemaps for double *result

13.1.2 Input parameters

The following typemaps instruct SWIG that a pointer really only holds a single input value:

int *INPUT

short *INPUT

long *INPUT

unsigned int *INPUT
unsigned short *INPUT
unsigned long *INPUT
double *INPUT

float *INPUT

When used, it allows values to be passed instead of pointers. For example, consider this function:

double add(double *a, double *b) {
return *a+*b;

}

Now, consider this SWIG interface:

gmodule example

%include "typemaps.i"

3{

extern double add(double *, double *);

%}

extern double add(double *INPUT, double *INPUT);

When the function is used in the scripting language interpreter, it will work like this:

result = add(3, 4)

13.1.3 Output parameters

The following typemap rules tell SWIG that pointer is the output value of a function. When used, you do not need to supply the argument when calling the function. Instead, one or more output
values are returned.

int *OUTPUT

short *QUTPUT

long *OUTPUT

unsigned int *OUTPUT
unsigned short *OUTPUT
unsigned long *OUTPUT
double *OUTPUT

float *OUTPUT

These methods can be used as shown in an earlier example. For example, if you have this C function :

void add(double a, double b, double *c) {
*c = a+b;

}

A SWIG interface file might look like this :

%module example

%include "typemaps.i"

%inline %{

extern void add(double a, double b, double *OUTPUT);
%}

In this case, only a single output value is returned, but this is not a restriction. An arbitrary number of output values can be returned by applying the output rules to more than one argument (as
shown previously).

If the function also returns a value, it is returned along with the argument. For example, if you had this:

extern int foo(double a, double b, double *OUTPUT);

13.1 The typemaps.i library

SWIG-4.2 Documentation

The function will return two values like this:

iresult, dresult = foo(3.5, 2)

13.1.4 Input/Output parameters

When a pointer serves as both an input and output value you can use the following typemaps :

int *INOUT

short *INOUT

long *INOUT

unsigned int *INOUT
unsigned short *INOUT
unsigned long *INOUT
double *INOUT

float *INOUT

A C function that uses this might be something like this:

void negate(double *x) {
*X = - (*x);

}

To make x function as both and input and output value, declare the function like this in an interface file :

%module example

%include "typemaps.i"

%{

extern void negate(double *);

%}

extern void negate(double *INOUT);

Now within a script, you can simply call the function normally :

a = negate(3); # a = -3 after calling this

One subtle point of the INOUT rule is that many scripting languages enforce mutability constraints on primitive objects (meaning that simple objects like integers and strings aren't supposed to
change). Because of this, you can't just modify the object's value in place as the underlying C function does in this example. Therefore, the INOUT rule returns the modified value as a new
object rather than directly overwriting the value of the original input object.

13.1.5 Using different names

As previously shown, the $apply directive can be used to apply the INPUT, OUTPUT, and INOUT typemaps to different argument names. For example:

// Make double *result an output value
%apply double *OUTPUT { double *result };

// Make Int32 *in an input value
%apply int *INPUT { Int32 *in };

// Make long *x inout
%apply long *INOUT {long *x};

To clear a rule, the $clear directive is used:

%clear double *result;
%clear Int32 *in, long *x;

Typemap declarations are lexically scoped so a typemap takes effect from the point of definition to the end of the file or a matching $clear declaration.

13.2 Applying constraints to input values

In addition to changing the handling of various input values, it is also possible to use typemaps to apply constraints. For example, maybe you want to insure that a value is positive, or that a
pointer is non-NULL. This can be accomplished including the constraints. i library file.

13.2.1 Simple constraint example

The constraints library is best illustrated by the following interface file :

// Interface file with constraints
gmodule example
%include "constraints.i"

double exp(double x);

double log(double POSITIVE); // Allow only positive values
double sqrt(double NONNEGATIVE); // Non-negative values only
double inv(double NONZERO); // Non-zero values

int fclose(FILE *NONNULL); // Non-NULL pointers only

The behavior of this file is exactly as you would expect. If any of the arguments violate the constraint condition, a scripting language exception will be raised. As a result, it is possible to catch
bad values, prevent mysterious program crashes and so on.

13.2 Applying constraints to input values

SWIG-4.2 Documentation

13.2.2 Constraint methods

The following constraints are currently available

POSITIVE Any number > 0 (not zero)
NEGATIVE Any number < 0 (not zero)
NONNEGATIVE Any number >= 0

NONPOSITIVE Any number <= 0

NONZERO Nonzero number

NONNULL Non-NULL pointer (pointers only).

13.2.3 Applying constraints to new datatypes

The constraints library only supports the primitive C datatypes, but it is easy to apply it to new datatypes using $apply. For example :

// RApply a constraint to a Real variable
%apply Number POSITIVE { Real in };

// RApply a constraint to a pointer type
%apply Pointer NONNULL { Vector * };

The special types of "Number" and "Pointer" can be applied to any numeric and pointer variable type respectively. To later remove a constraint, the $clear directive can be used :

%clear Real in;
%clear Vector *;

14 Typemaps

« Introduction
o Type conversion
o Typemaps
o Pattern matching
o Reusing typemaps
o What can be done with typemaps?
o What can't be done with typemaps?
o Similarities to Aspect Oriented Programming
o The rest of this chapter
« Typemap specifications
o Defining a typemap
o Typemap scope
o Copying a typemap
o Deleting a typemap
o Placement of typemaps
« Pattern matching rules
o Basic matching rules
o Typedef reductions matching
o Default typemap matching rules
o Multi-arguments typemaps
o Matching rules compared to C++ templates
o Debugging typemap pattern matching
« Code generation rules
o Scope
o Declaring new local variables
o Special variables
o Special variable macros
= $descriptor(type
= $typemap(method, typepattern
= $typemap(method:attribute, typepattern
o Special variables and typemap attributes
o Special variables combined with special variable macros
« Common typemap methods
o "in" typemap
"typecheck" typemap
"out” typemap
"arginit" typemap
"default” typemap
o "check" typemap
"argout" typemap
"freearg" typemap
"newfree" typemap
"ret" typemap
"memberin" typemap
"varin" typemap
"varout" typemap
"throws" typemap
Some typemap examples
o Typemaps for arrays
o Implementing constraints with typemaps
Typemaps for multiple target languages
Optimal code generation when returning by value
Multi-argument typemaps
Typemap warnings
Typemap fragments
o Fragment type specialization
o Fragments and automatic typemap specialization
The run-time type checker
o Implementation
o Usage
Typemaps and overloading
o SWIG_TYPECHECK_ POINTER precedence level and the typecheck typemap
More about %apply and %clear

°

°

o

°

o

°

°

°

°

°

°

o

13.2 Applying constraints to input values

125

SWIG-4.2 Documentation

« Passing data between typemaps
o C++ "this" pointer
« Where to go for more information?

14.1 Introduction

Chances are, you are reading this chapter for one of two reasons; you either want to customize SWIG's behavior or you overheard someone mumbling some incomprehensible drivel about
"typemaps" and you asked yourself "typemaps, what are those?" That said, let's start with a short disclaimer that "typemaps" are an advanced customization feature that provide direct access
to SWIG's low-level code generator. Not only that, they are an integral part of the SWIG C++ type system (a non-trivial topic of its own). Typemaps are generally nota required part of using
SWIG. Therefore, you might want to re-read the earlier chapters if you have found your way to this chapter with only a vague idea of what SWIG already does by default.

14.1.1 Type conversion
One of the most important problems in wrapper code generation is the conversion or marshalling of datatypes between programming languages. Specifically, for every C/C++ declaration,
SWIG must somehow generate wrapper code that allows values to be passed back and forth between languages. Since every programming language represents data differently, this is not a

simple of matter of simply linking code together with the C linker. Instead, SWIG has to know something about how data is represented in each language and how it can be manipulated.

To illustrate, suppose you had a simple C function like this:

int factorial(int n);

To access this function from Python, a pair of Python API functions are used to convert integer values. For example:

long PyInt_AsLong(PyObject *obj); /* Python --> C */
PyObject *PyInt_ FromLong(long Xx); /* C --> Python */

The first function is used to convert the input argument from a Python integer object to C 1ong. The second function is used to convert a value from C back into a Python integer object.

Inside the wrapper function, you might see these functions used like this:

PyObject *wrap_factorial(PyObject *self, PyObject *args) {
int argl;
int result;
PyObject *objl;
PyObject *resultobj;

if (!PyArg_ParseTuple("O:factorial", &objl)) return NULL;
argl = PyInt_AsLong(objl);

result = factorial(argl);

resultobj = PyInt FromLong(result);

return resultobj;

Every target language supported by SWIG has functions that work in a similar manner. For example, in Perl, the following functions are used:

IV SVIV(SV *sv); /* Perl --> C */
void sv_setiv(SV *sv, IV val); /* C --> Perl */

In Tcl:

int Tcl_GetLongFromObj(Tcl_Interp *interp, Tcl_Obj *obj, long *value);
Tcl _Obj *Tcl_NewIntObj(long value);

The precise details are not so important. What is important is that all of the underlying type conversion is handled by collections of utility functions and short bits of C code like this---you simply
have to read the extension documentation for your favorite language to know how it works (an exercise left to the reader).

14.1.2 Typemaps

Since type handling is so central to wrapper code generation, SWIG allows it to be completely defined (or redefined) by the user. To do this, a special $typemap directive is used. For example:

/* Convert from Python --> C */
%typemap(in) int {

$1 = PyInt_AsLong($input);
}

/* Convert from C --> Python */
%typemap(out) int {

$result = PyInt_FromLong($1);
}

At first glance, this code will look a little confusing. However, there is really not much to it. The first typemap (the "in" typemap) is used to convert a value from the target language to C. The
second typemap (the "out" typemap) is used to convert in the other direction. The content of each typemap is a small fragment of code that is inserted directly into the SWIG generated
wrapper functions. The code is usually C or C++ code which will be generated into the C/C++ wrapper functions. Note that this isn't always the case as some target language modules allow
target language code within the typemaps which gets generated into target language specific files. Within this code, a number of special variables prefixed with a $ are expanded. These are
really just placeholders for C/C++ variables that are generated in the course of creating the wrapper function. In this case, $input refers to an input object that needs to be converted to C/C++
and $result refers to an object that is going to be returned by a wrapper function. $1 refers to a C/C++ variable that has the same type as specified in the typemap declaration (an int in this
example).

A short example might make this a little more clear. If you were wrapping a function like this:

int ged(int x, int y);

A wrapper function would look approximately like this:

PyObject *wrap_gcd(PyObject *self, PyObject *args) {
int argl;
int arg2;

14.1 Introduction 126

SWIG-4.2 Documentation

int result;

PyObject *objl;
PyObject *obj2;
PyObject *resultobj;

if (!PyArg_ParseTuple("0OO:gcd", &objl, &obj2)) return NULL;

/* "in" typemap, argument 1 */

{
argl = PyInt_AsLong(objl);
}
/* "in" typemap, argument 2 */
{
arg2 = PyInt_AsLong(obj2);
}

result = gcd(argl, arg2);

/* "out" typemap, return value */
{

resultobj = PyInt_ FromLong(result);
}

return resultobj;

In this code, you can see how the typemap code has been inserted into the function. You can also see how the special $ variables have been expanded to match certain variable names inside
the wrapper function. This is really the whole idea behind typemaps--they simply let you insert arbitrary code into different parts of the generated wrapper functions. Because arbitrary code can
be inserted, it possible to completely change the way in which values are converted.

14.1.3 Pattern matching

As the name implies, the purpose of a typemap is to "map" C datatypes to types in the target language. Once a typemap is defined for a C datatype, it is applied to all future occurrences of
that type in the input file. For example:

/* Convert from Perl --> C */
%typemap(in) int {

$1 = SvIV($input);
}

int factorial(int n);
int ged(int x, int y);
int count(char *s, char *t, int max);

The matching of typemaps to C datatypes is more than a simple textual match. In fact, typemaps are fully built into the underlying type system. Therefore, typemaps are unaffected by
typedef, namespaces, and other declarations that might hide the underlying type. For example, you could have code like this:

/* Convert from Ruby--> C */
%typemap(in) int {

$1 = NUM2INT($input);
}
typedef int Integer;
namespace foo {

typedef Integer Number;
}i

int foo(int x);
int bar(Integer y);
int spam(foo::Number a, foo::Number b);

In this case, the typemap is still applied to the proper arguments even though typenames don't always match the text "int". This ability to track types is a critical part of SWIG--in fact, all of the
target language modules work merely define a family of typemaps for the basic types. Yet, it is never necessary to write new typemaps for typenames introduced by typedef.

In addition to tracking typenames, typemaps may also be specialized to match against a specific argument name. For example, you could write a typemap like this:

%typemap(in) double nonnegative {
$1 = PyFloat_AsDouble($input);
if ($1 < 0) {
PyErr_SetString(PyExc_ValueError, "argument must be nonnegative.");
SWIG_fail;
}
}

double sin(double x);
double cos(double x);
double sqrt(double nonnegative);

typedef double Real;
double log(Real nonnegative);

For certain tasks such as input argument conversion, typemaps can be defined for sequences of consecutive arguments. For example:

%typemap(in) (char *str, int len) {
$1 = PyString_ AsString($input); /* char *str */
$2 = PyString_Size($input); /* int len */
}

int count(char *str, int len, char c);

14.1 Introduction

SWIG-4.2 Documentation

In this case, a single input object is expanded into a pair of C arguments. This example also provides a hint to the unusual variable naming scheme involving $1, $2, and so forth.
14.1.4 Reusing typemaps

Typemaps are normally defined for specific type and argument name patterns. However, typemaps can also be copied and reused. One way to do this is to use assignment like this:

%typemap(in) Integer = int;
%typemap(in) (char *buffer, int size) = (char *str, int len);

There is a more powerful way to copy a family of typemaps though. Consider the following family of two typemap methods, "in" and "out" for type int:

%typemap(in) int {
/* Convert an integer argument */

}
%typemap(out) int {
/* Return an integer value */

Each of the two typemap methods could be copied individually for type size_t as follows:

/* Apply all of the int typemaps to size_t */
$typemap(in) size t = int;
$typemap(out) size_t = int;

A more powerful form of copying is available from the $apply directive. The code below is identical to the above:

/* Apply all of the int typemaps to size_t */
%apply int { size t };

%apply merely takes all of the typemaps that are defined for one type and applies them to other types. Note: you can include a comma separated set of types inthe { ... } partof 2apply.

It should be noted that it is not necessary to copy typemaps for types that are related by typedef. For example, if you have this,

typedef int size_t;

then SWIG already knows that the int typemaps apply. You don't have to do anything.
14.1.5 What can be done with typemaps?

The primary use of typemaps is for defining wrapper generation behavior at the level of individual C/C++ datatypes. There are currently six general categories of problems that typemaps
address:

Argument handling

int foo(int x, double y, char *s);

« Input argument conversion ("in" typemap).

« Input argument type checking for types used in overloaded methods ("typecheck” typemap).
« Output argument handling ("argout" typemap).

« Input argument value checking ("check" typemap).

« Input argument initialization ("arginit" typemap).

« Default arguments ("default" typemap).

« Input argument resource management ("freearg" typemap).

Return value handling

int foo(int x, double y, char *s);

« Function return value conversion ("out" typemap).
« Return value resource management ("ret" typemap).
« Resource management for newly allocated objects ("newfree" typemap).

Exception handling

int foo(int x, double y, char *s) throw(MemoryError, IndexError);

« Handling of C++ exception specifications. ("throw" typemap).

Global variables

int foo;

« Assignment of a global variable. ("varin" typemap).
« Reading a global variable. ("varout" typemap).

Member variables

struct Foo {
int x[20];
Yi

« Assignment of data to a class/structure member. ("memberin" typemap).

14.1 Introduction

SWIG-4.2 Documentation

Constant creation

#define FOO 3
%constant int BAR = 42;
enum { ALE, LAGER, STOUT };

« Creation of constant values. ("consttab" or "constcode" typemap).

Details of each of these typemaps will be covered shortly. Also, certain language modules may define additional typemaps that expand upon this list. For example, the Java module defines a
variety of typemaps for controlling additional aspects of the Java bindings. Consult language specific documentation for further details.

14.1.6 What can't be done with typemaps?

Typemaps can't be used to define properties that apply to C/C++ declarations as a whole. For example, suppose you had a declaration like this,

Foo *make_Foo(int n);

and you wanted to tell SWIG that make_Foo(int n) returned a newly allocated object (for the purposes of providing better memory management). Clearly, this property of make_Foo (int

n) is not a property that would be associated with the datatypeFoo * by itself. Therefore, a completely different SWIG customization mechanism ($feature) is used for this purpose. Consult
the Customization Features chapter for more information about that.

Typemaps also can't be used to rearrange or transform the order of arguments. For example, if you had a function like this:

void foo(int, char *);

you can't use typemaps to interchange the arguments, allowing you to call the function like this:

foo("hello", 3) # Reversed arguments

If you want to change the calling conventions of a function, write a helper function instead. For example:

%rename(foo) wrap foo;

%inline %{

void wrap_foo(char *s, int x) {
foo(x, s);

}

%}

14.1.7 Similarities to Aspect Oriented Programming

SWIG has parallels to Aspect Oriented Software Development (AOP). The AOP terminology with respect to SWIG typemaps can be viewed as follows:

« Cross-cutting concerns: The cross-cutting concerns are the modularization of the functionality that the typemaps implement, which is primarily marshalling of types from/to the target
language and C/C++.

« Advice: The typemap body contains code which is executed whenever the marshalling is required.
« Pointcut: The pointcuts are the positions in the wrapper code that the typemap code is generated into.
« Aspect: Aspects are the combination of the pointcut and the advice, hence each typemap is an aspect.

SWIG can also be viewed as has having a second set of aspects based around %feature. Features such as $exception are also cross-cutting concerns as they encapsulate code that can
be used to add logging or exception handling to any function.

14.1.8 The rest of this chapter

The rest of this chapter provides detailed information for people who want to write new typemaps. This information is of particular importance to anyone who intends to write a new SWIG target
language module. Power users can also use this information to write application specific type conversion rules.

Since typemaps are strongly tied to the underlying C++ type system, subsequent sections assume that you are reasonably familiar with the basic details of values, pointers, references, arrays,
type qualifiers (e.g., const), structures, namespaces, templates, and memory management in C/C++. If not, you would be well-advised to consult a copy of "The C Programming Language" by
Kernighan and Ritchie or "The C++ Programming Language" by Stroustrup before going any further.

14.2 Typemap specifications

This section describes the behavior of the $typemap directive itself.

14.2.1 Defining a typemap

New typemaps are defined using the $typemap declaration. The general form of this declaration is as follows (parts enclosed in [...] are optional):

%typemap (method [, modifiers]) typelist code ;

method is a simply a name that specifies what kind of typemap is being defined. It is usually a name like "in", "out™", or "argout". The purpose of these methods is described later.

modifiers is an optional comma separated list ofname="value" values. These are sometimes to attach extra information to a typemap and is often target-language dependent. They are also
known as typemap attributes.

typelist is a list of the C++ type patterns that the typemap will match. The general form of this list is as follows:

typelist : typepattern [, typepattern, typepattern, ...]

typepattern : type [(parms)]
| type name [(parms)]
| ¢ typelist) [(parms)]

Each type pattern is either a simple type, a simple type and argument name, or a list of types in the case of multi-argument typemaps. In addition, each type pattern can be parameterized with
a list of temporary variables (parms). The purpose of these variables will be explained shortly.

code specifies the code used in the typemap. Usually this is C/C++ code, but in the statically typed target languages, such as Java and C#, this can contain target language code for certain
typemaps. It can take any one of the following forms:

14.2 Typemap specifications

https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Aspect-oriented_programming#Terminology

SWIG-4.2 Documentation

code 8 4 coo I

| ${ ... %}

Note that the preprocessor will expand code within the {} delimiters, but not in the last two styles of delimiters, see Preprocessor and Typemaps. Here are some examples of valid typemap
specifications:

/* Simple typemap declarations */
%typemap(in) int {

$1 = PyInt_AsLong($input);
}
$typemap(in) int "$1 = PyInt_AsLong($input);"
%typemap(in) int %{

$1 = PyInt_AsLong($input);
%}

/* Typemap with extra argument name */
%typemap(in) int nonnegative {

}

/* Multiple types in one typemap */
%typemap(in) int, short, long {

$1 = SvIV($input);
}

/* Typemap with modifiers */
$typemap(in, doc="integer") int "$1 = scm to_int($input);"

/* Typemap applied to patterns of multiple arguments */
%typemap(in) (char *str, int len),
(char *buffer, int size)

{
$1 = PyString AsString($input);
$2 = PyString_Size($input);

}

/* Typemap with extra pattern parameters */
%typemap(in, numinputs=0) int *output (int temp),
long *output (long temp)
{
$1 = &temp;
}

Admittedly, it's not the most readable syntax at first glance. However, the purpose of the individual pieces will become clear.
14.2.2 Typemap scope

Once defined, a typemap remains in effect for all of the declarations that follow. A typemap may be redefined for different sections of an input file. For example:

// typemapl
%typemap(in) int {

}
int fact(int); // typemapl
int ged(int x, int y); // typemapl

// typemap2
%typemap(in) int {

}

int isprime(int); // typemap2

One exception to the typemap scoping rules pertains to the $extend declaration. $extend is used to attach new declarations to a class or structure definition. Because of this, all of the
declarations in an $extend block are subject to the typemap rules that are in effect at the point where the class itself is defined. For example:

class Foo {

%typemap(in) int {

}

%extend Foo {
int blah(int x); // typemap has no effect. Declaration is attached to Foo which
// appears before the %$typemap declaration.

14.2.3 Copying a typemap

A typemap is copied by using assignment. For example:

%typemap(in) Integer = int;

or this:

$typemap(in) Integer, Number, int32_t = int;

14.2 Typemap specifications

SWIG-4.2 Documentation

Types are often managed by a collection of different typemaps. For example:

%typemap(in) int
%typemap (out) int
%typemap(varin) int
%typemap(varout) int

s
DIV

To copy all of these typemaps to a new type, use %apply. For example:

%apply int { Integer }; // Copy all int typemaps to Integer
%apply int { Integer, Number }; // Copy all int typemaps to both Integer and Number

The patterns for $apply follow the same rules as for $typemap. For example:

%apply int *output { Integer *output }; // Typemap with name
sapply (char *buf, int len) { (char *buffer, int size) }; // Multiple arguments

14.2.4 Deleting a typemap

A particular typemap can be deleted / cleared by simply defining no code. For example:

%typemap(in) int; // Clears the "in" typemap for int
%typemap(in) int, long, short; // Clears the "in" typemap for int, long, short
%typemap(in) int *output;

The above syntax deletes a typemap for just one typemap method - the "in" method in each of the examples above. The 2clear directive is more powerful and will delete / clear a family of
typemaps, that is, all the typemap methods for a given type. For example:

%clear int; // Delete all typemaps ("in", "out", "varin", ...) for int
%clear int *output, long *output;

Note: Since SWIG's default behavior is defined by typemaps, clearing a fundamental type like int will make that type unusable unless you also define a new family of typemaps immediately
after the clear operation.

14.2.5 Placement of typemaps

Typemap declarations can be declared in the global scope, within a C++ namespace, and within a C++ class. For example:

%typemap(in) int {
}

namespace std {
class string;
%typemap(in) string {

}
}

class Bar {

public:
typedef const int & const_reference;
%typemap(out) const_reference {

}
Yi

When a typemap appears inside a namespace or class, it stays in effect until the end of the SWIG input (just like before). However, the typemap takes the local scope into account. Therefore,
this code

namespace std {
class string;
$typemap(in) string {

}
}

is really defining a typemap for the type std: : string. You could have code like this:

namespace std {
class string;
%typemap(in) string { /* std::string */

}
}

namespace Foo {
class string;
%typemap(in) string { /* Foo::string */

}
}

In this case, there are two completely distinct typemaps that apply to two completely different types (std: :string and Foo: : string).

It should be noted that for scoping to work, SWIG has to know that string is a typename defined within a particular namespace. In this example, this is done using the forward class
declaration class string.

14.2 Typemap specifications

SWIG-4.2 Documentation

14.3 Pattern matching rules

The section describes the pattern matching rules by which C/C++ datatypes are associated with typemaps. The matching rules can be observed in practice by using the debugging options also
described.

14.3.1 Basic matching rules

Typemaps are matched using both a type and a name (typically the name of an argument, but in the case of out typemaps, the name of a function, qualified by the class name if it's a class
method). For a given TYPE NAME pair, the following rules are applied, in order, to find a match. The first typemap found is used.

« Typemaps that exactly match TYPE and NAME.

« Typemaps that exactly match TYPE only.

« If TYPE is a C++ template of typeT< TPARMS >, where TPARMS are the template parameters, the type is stripped of the template parameters and the following checks are then made:
o Typemaps that exactly match T and NAME.
o Typemaps that exactly match T only.

If TYPE includes qualifiers (const, volatile, etc.), each qualifier is stripped one at a time to form a new stripped type and the matching rules above are repeated on the stripped type. The left-
most qualifier is stripped first, resulting in the right-most (or top-level) qualifier being stripped last. For example int const*const is first stripped to int *const thenint *.

If TYPE is an array. The following transformation is made:
« Replace all dimensions to [ANY] and look for a generic array typemap.

To illustrate, suppose that you had a function like this:

int foo(const char *s);

To find a typemap for the argument const char *s, SWIG will search for the following typemaps:

const char *s Exact type and name match

const char * Exact type match

char *s Type and name match (qualifier stripped)
char * Type match (qualifier stripped)

When more than one typemap rule might be defined, only the first match found is actually used. Here is an example that shows how some of the basic rules are applied:

%typemap(in) int *x {

. typemap 1
}
%typemap(in) int * {

. typemap 2
}
%typemap(in) const int *z {

. typemap 3
}
%typemap(in) int [4] {

. typemap 4
}
%typemap(in) int [ANY] {

... typemap 5

}
void A(int *x); // int *x rule (typemap 1)
void B(int *y); // int * rule (typemap 2)
void C(const int *x); // int *x rule (typemap 1)
void D(const int *z); // const int *z rule (typemap 3)
void E(int x[4]); // int [4] rule (typemap 4)
void F(int x[1000]); // int [ANY] rule (typemap 5)

Compatibility note: SWIG-2.0.0 introduced stripping the qualifiers one step at a time. Prior versions stripped all qualifiers in one step.
14.3.2 Typedef reductions matching

If no match is found using the rules in the previous section, SWIG applies a typedef reduction to the type and repeats the typemap search for the reduced type. To illustrate, suppose you had
code like this:

%typemap(in) int {
... typemap 1
}

typedef int Integer;
void blah(Integer x);

To find the typemap for Integer x, SWIG will first search for the following typemaps:

Integer x
Integer

Finding no match, it then applies a reduction Integer -> int to the type and repeats the search.

int x
int —--> match: typemap 1

Even though two types might be the same via typedef, SWIG allows typemaps to be defined for each typename independently. This allows for interesting customization possibilities based
solely on the typename itself. For example, you could write code like this:

14.3 Pattern matching rules

132

SWIG-4.2 Documentation

typedef double pdouble; // Positive double

// typemap 1
%typemap(in) double {
. get a double ...
}
// typemap 2
%typemap(in) pdouble {
. get a positive double ...

}
double sin(double x); // typemap 1
pdouble sqrt(pdouble x); // typemap 2

When reducing the type, only one typedef reduction is applied at a time. The search process continues to apply reductions until a match is found or until no more reductions can be made.

For complicated types, the reduction process can generate a long list of patterns. Consider the following:

typedef int Integer;
typedef Integer Row4[4];
void foo(Row4 rows[10]);

To find a match for the Row4 rows[10] argument, SWIG would check the following patterns, stopping only when it found a match:

Row4 rows[10]
Rowd [10]

Row4 rows[ANY]
Row4 [ANY]

Reduce Row4 --> Integer[4]
Integer rows[10][4]

Integer [10][4]

Integer rows[ANY][ANY]
Integer [ANY][ANY]

Reduce Integer --> int
int rows[10][4]

int [10][4]

int rows[ANY][ANY]

int [ANY][ANY]

For parameterized types like templates, the situation is even more complicated. Suppose you had some declarations like this:

typedef int Integer;
typedef foo<Integer, Integer> fooiij;
void blah(fooii *x);

In this case, the following typemap patterns are searched for the argument fooii *x:

fooii *x
fooii *

Reduce fooii --> foo<Integer, Integer>
foo<Integer, Integer> *x
foo<Integer, Integer> *

Reduce Integer -> int
foo<int, Integer> *x
foo<int, Integer> *

Reduce Integer -> int
foo<int, int> *x
foo<int, int> *

Typemap reductions are always applied to the left-most type that appears. Only when no reductions can be made to the left-most type are reductions made to other parts of the type. This
behavior means that you could define a typemap for foo<int, Integer>,buta typemap for foo<Integer, int> would never be matched. Admittedly, this is rather esoteric--there's little
practical reason to write a typemap quite like that. Of course, you could rely on this to confuse your coworkers even more.

As a point of clarification, it is worth emphasizing that typedef matching is a typedef reduction process only, that is, SWIG does not search for every single possible typedef. Given a type in a
declaration, it will only reduce the type, it won't build it up looking for typedefs. For example, given the type struct, the typemap below will not be used for the astruct parameter, because
Struct is fully reduced:

struct Struct {...};
typedef Struct StructTypedef;

%typemap(in) StructTypedef {
}

void go(Struct aStruct);

14.3.3 Default typemap matching rules

If the basic pattern matching rules result in no match being made, even after typedef reductions, the default typemap matching rules are used to look for a suitable typemap match. These rules
match a generic typemap based on the reserved SWIGTYPE base type. For example pointers will use SWIGTYPE * and references will use SWIGTYPE &. More precisely, the rules are based
on the C++ class template partial specialization matching rules used by C++ compilers when looking for an appropriate partial template specialization. This means that a match is chosen from
the most specialized set of generic typemap types available. For example, when looking for a match to int const *, the rules will prefer to matchSWIGTYPE const * if available before
matching SWIGTYPE *, before matching SWIGTYPE.

Most SWIG language modules use typemaps to define the default behavior of the C primitive types. This is entirely straightforward. For example, a set of typemaps for primitives marshalled by
value or const reference are written like this:

14.3 Pattern matching rules

133

SWIG-4.2 Documentation

%typemap(in) int "... convert to int ..."
%typemap(in) short "... convert to short ..."
%typemap(in) float "... convert to float ..."
%typemap(in) const int & "... convert ..."

. convert ..."
. convert ..."

%typemap(in) const short &
%typemap(in) const float &

Since typemap matching follows all typedef declarations, any sort of type that is mapped to a primitive type by value or const reference through typedef will be picked up by one of these
primitive typemaps. Most language modules also define typemaps for char pointers and char arrays to handle strings, so these non-default types will also be used in preference as the basic
typemap matching rules provide a better match than the default typemap matching rules.

Below is a list of the typical default types supplied by language modules, showing what the "in" typemap would look like:

%typemap(in) SWIGTYPE &
%typemap(in) SWIGTYPE *
$typemap(in) SWIGTYPE *const
$typemap(in) SWIGTYPE *consté&
%typemap(in) SWIGTYPE[ANY]
$typemap(in) SWIGTYPE []
%typemap(in) enum SWIGTYPE
%typemap(in) const enum SWIGTYPE &
%typemap(in) SWIGTYPE (CLASS::*)
%typemap(in) SWIGTYPE

. default reference handling ...
. default pointer handling ...
. default pointer const handling ...
. default pointer const reference handling ...
1D fixed size arrays handling ...
. unknown sized array handling ...
. default handling for enum values ...
. default handling for const enum reference values
. default pointer member handling ...
simple default handling ...

e e e e e
N e e e e e e

If you wanted to change SWIG's default handling for simple pointers, you would simply redefine the rule for SWIGTYPE *. Note, the simple default typemap rule is used to match against
simple types that don't match any other rules:

%typemap(in) SWIGTYPE { ... simple default handling ... }

This typemap is important because it is the rule that gets triggered when call or return by value is used. For instance, if you have a declaration like this:

double dot_product(Vector a, Vector b);

The Vector type will usually just get matched againstSWIGTYPE. The default implementation of SWIGTYPE is to convert the value into pointers (as described in this earlier section).

By redefining SWIGTYPE it may be possible to implement other behavior. For example, if you cleared all typemaps for SWIGTYPE, SWIG simply won't wrap any unknown datatype (which might
be useful for debugging). Alternatively, you might modify SWIGTYPE to marshal objects into strings instead of converting them to pointers.

Let's consider an example where the following typemaps are defined and SWIG is looking for the best match for the enum shown below:

%typemap(in) const Hello &
%typemap(in) const enum SWIGTYPE &
%typemap(in) enum SWIGTYPE &
%typemap(in) SWIGTYPE &
%typemap(in) SWIGTYPE

e
s]

enum Hello {};
const Hello &hi;

The typemap at the top of the list will be chosen, not because it is defined first, but because it is the closest match for the type being wrapped. If any of the typemaps in the above list were not
defined, then the next one on the list would have precedence.

The best way to explore the default typemaps is to look at the ones already defined for a particular language module. Typemap definitions are usually found in the SWIG library in a file such as
java.swg,csharp.swg etc. However, for many of the target languages the typemaps are hidden behind complicated macros, so the best way to view the default typemaps, or any
typemaps for that matter, is to look at the preprocessed output by running swig -E on any interface file. Finally the best way to view the typemap matching rules in action is via the debugging
typemap pattern matching options covered later on.

Compatibility note: The default typemap matching rules were modified in SWIG-2.0.0 from a slightly simpler scheme to match the current C++ class template partial specialization matching
rules.

14.3.4 Multi-arguments typemaps

When multi-argument typemaps are specified, they take precedence over any typemaps specified for a single type. For example:

%typemap(in) (char *buffer, int len) {
// typemap 1
}

%typemap(in) char *buffer {
// typemap 2
}

void foo(char *buffer, int len, int count); // (char *buffer, int len)
void bar(char *buffer, int blah); // char *buffer

Multi-argument typemaps are also more restrictive in the way that they are matched. Currently, the first argument follows the matching rules described in the previous section, but all
subsequent arguments must match exactly.

14.3.5 Matching rules compared to C++ templates

For those intimately familiar with C++ templates, a comparison of the typemap matching rules and template type deduction is interesting. The two areas considered are firstly the default
typemaps and their similarities to partial template specialization and secondly, non-default typemaps and their similarities to full template specialization.

For default (SWIGTYPE) typemaps the rules are inspired by C++ class template partial specialization. For example, given partial specialization for T consts& :

template <typename T> struct X { void a(); };
template <typename T> struct X< T const& > { void b(); };

The full (unspecialized) template is matched with most types, such as:

14.3 Pattern matching rules

134

SWIG-4.2 Documentation

X< int & > x1; xl.a();

and the following all match the T consta partial specialization:

X< int *const& > X2; x2.b();
X< int const*const& > x3; x3.b();
X< int const& > x4; x4.b();

Now, given just these two default typemaps, where T is analogous to SWIGTYPE:

$typemap(...) SWIGTYPE { ...}
%typemap(...) SWIGTYPE const& { ... }

The generic default typemap SWIGTYPE is used with most types, such as

int &

and the following all match the SWIGTYPE consté& typemap, just like the partial template matching:

int *const&
int const*const&
int const&

Note that the template and typemap matching rules are not identical for all default typemaps though, for example, with arrays.

For non-default typemaps, one might expect SWIG to follow the fully specialized template rules. This is nearly the case, but not quite. Consider a very similar example to the earlier partially
specialized template but this time there is a fully specialized template:

template <typename T> struct Y { void a(); };
template <> struct Y< int const & > { void b(); };

Only the one type matches the specialized template exactly:

¥< int & > yl; yl.a();
¥< int *const& > y2; vy2.a();
Y< int const *const& > y3; y3.a():;
Y< int const& > y4; y4.b(); // fully specialized match

Given typemaps with the same types used for the template declared above, where T is again analogous to SWIGTYPE:

stypemap(...) SWIGTYPE { ...}
%typemap(...) int const& { ...}

The comparison between non-default typemaps and fully specialized single parameter templates turns out to be the same, as just the one type will match the non-default typemap:

int &

int *const&

int const*const&

int const& // matches non-default typemap int consté&

However, if a non-const type is used instead:

$typemap(...) SWIGTYPE { ...}
%typemap(...) int & 4 ocoo P

then there is a clear difference to template matching as both the const and non-const types match the typemap:

int & // matches non-default typemap int &
int *const&

int const*const&

int const& // matches non-default typemap int &

There are other subtle differences such as typedef handling, but at least it should be clear that the typemap matching rules are similar to those for specialized template handling.
14.3.6 Debugging typemap pattern matching

There are two useful debug command line options available for debugging typemaps, ~debug-tmsearch and -debug-tmused .

The -debug-tmsearch option is a verbose option for debugging typemap searches. This can be very useful for watching the pattern matching process in action and for debugging which
typemaps are used. The option displays all the typemaps and types that are looked for until a successful pattern match is made. As the display includes searches for each and every type
needed for wrapping, the amount of information displayed can be large. Normally you would manually search through the displayed information for the particular type that you are interested in.

For example, consider some of the code used in the Typedef reductions section already covered:

typedef int Integer;
typedef Integer Row4[4];
void foo(Row4 rows[10]);

A sample of the debugging output is shown below for the "in" typemap:

swig -perl -debug-tmsearch example.i

14.3 Pattern matching rules 135

SWIG-4.2 Documentation

example.h:3: Searching for a suitable 'in' typemap for: Row4 rows[10]
Looking for: Row4 rows[10]
Looking for: Row4 [10]
Looking for: Row4 rows[ANY]
Looking for: Row4 [ANY]
Looking for: Integer rows[10][4]
Looking for: Integer [10][4]
Looking for: Integer rows[ANY][ANY]
Looking for: Integer [ANY][ANY]
Looking for: int rows[10][4]
Looking for: int [10][4]
Looking for: int rows[ANY][ANY]
Looking for: int [ANY][ANY]
Looking for: SWIGTYPE rows[ANY][ANY]
Looking for: SWIGTYPE [ANY][ANY]
Looking for: SWIGTYPE rows[ANY][]
Looking for: SWIGTYPE [ANY][]
Looking for: SWIGTYPE *rows[ANY]
Looking for: SWIGTYPE *[ANY]
Looking for: SWIGTYPE rows[ANY]
Looking for: SWIGTYPE [ANY]
Looking for: SWIGTYPE rows[]
Looking for: SWIGTYPE []
Using: $typemap(in) SWIGTYPE []

showing that the best default match supplied by SWIG is the SWIGTYPE [] typemap. As the example shows, the successful match displays the used typemap source including typemap
method, type and optional name in one of these simplified formats:

e Using: %$typemap(method) type name
e Using: %typemap(method) type name = type2 name2
¢ Using: %apply type2 name2 { type name }

This information might meet your debugging needs, however, you might want to analyze further. If you next invoke SWIG with the -E option to display the preprocessed output, and search for
the particular typemap used, you'll find the full typemap contents (example shown below for Python):

%typemap(in, noblock=1) SWIGTYPE [] (void *argp = 0, int res = 0) {

res = SWIG ConvertPtr($input, &argp, $descriptor, $disown | 0);
if (!SWIG IsOK(res)) {
SWIG_exception_fail (SWIG_ArgError(res), "in method '" "$symname" "', argument "
"Sargnum"" of type '" "Stype""'");

}
$1 = ($ltype)(argp);

The generated code for the foo wrapper will then contain the snippets of the typemap with the special variables expanded. The rest of this chapter will need reading though to fully understand
all of this, however, the relevant parts of the generated code for the above typemap can be seen below:

SWIGINTERN PyObject *_wrap_foo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
void *argpl = 0 ;
int resl = 0 ;

resl = SWIG_ConvertPtr(obj0, &argpl, SWIGTYPE p _a 4_ int, 0 | 0);
if (!SWIG_IsOK(resl)) {
SWIG_exception fail(SWIG_ArgError(resl), "in method '" "foo" "', argument "
"1"" of type '" "int [10][4]""'");

}
argl = (int (*)[4])(argpl);

}

Searches for multi-argument typemaps are not mentioned unless a matching multi-argument typemap does actually exist. For example, the output for the code in the earlier multi-arguments
section is as follows:

example.h:39: Searching for a suitable 'in' typemap for: char *buffer
Looking for: char *buffer
Multi-argument typemap found...
Using: $typemap(in) (char *buffer, int len)

The second option for debugging is ~debug-tmused and this displays the typemaps used. This option is a less verbose version of the ~debug-tmsearch option as it only displays each
successfully found typemap on a separate single line. The output displays the type, and name if present, the typemap method in brackets and then the actual typemap used in the same
simplified format output by the —~debug-tmsearch option. Below is the output for the example code at the start of this section on debugging.

$ swig -perl -debug-tmused example.i

example.h:3: Typemap for Row4 rows[10] (in) : %typemap(in) SWIGTYPE []

example.h Typemap for Row4 rows[10] (typecheck) : $typemap(typecheck) SWIGTYPE *
example. Typemap for Row4 rows[10] (freearg) : %typemap(freearg) SWIGTYPE []
example.h:3: Typemap for void foo (out) : %typemap(out) void

Now, consider the following interface file:

%module example

3{
void set_value(const char* val) {}
%}

%$typemap (check) char *NON_NULL {
if (1$1) {

14.3 Pattern matching rules

SWIG-4.2 Documentation

/* ... error handling ... */
}
}

// use default pointer handling instead of strings
%apply SWIGTYPE * { const char* val, const char* another value }

$typemap(check) const char* val = char* NON_NULL;
%typemap(arginit, noblock=1) const char* val {

$1 = nn;
}

void set_value(const char* val);

and the output debug:

swig -perl5 -debug-tmused example.i
example.i:21: Typemap for char const *val (arginit) : %typemap(arginit) char const *val

example. Typemap for char const *val (in) : %apply SWIGTYPE * { char const *val }

example. Typemap for char const *val (typecheck) : %apply SWIGTYPE * { char const *val }
example. Typemap for char const *val (check) : %typemap(check) char const *val = char *NON_NULL
example. Typemap for char const *val (freearg) : %apply SWIGTYPE * { char const *val }

example.i:21: Typemap for void set_value (out) : %typemap(out) void

The following observations about what is displayed can be noted (the same applies for -debug-tmsearch):
« The relevant typemap is shown, but for typemap copying, the appropriate $typemap or $apply is displayed, for example, the "check" and "in" typemaps.
« The typemap modifiers are not shown, eg the noblock=1 modifier in the "arginit" typemap.

« The exact sapply statement might look different to what is in the actual code. For example, the const char* another_value is not shown as it is not relevant here. Also the types
may be displayed slightly differently - char const * and notconst char*.

14.4 Code generation rules

This section describes rules by which typemap code is inserted into the generated wrapper code.
14.4.1 Scope

When a typemap is defined like this:

%typemap(in) int {
$1 = PyInt_ AsLong($input);
}

the typemap code is inserted into the wrapper function using a new block scope. In other words, the wrapper code will look like this:

wrap_whatever() {
// Typemap code
{
argl = PyInt_AsLong(objl);
}

Because the typemap code is enclosed in its own block, it is legal to declare temporary variables for use during typemap execution. For example:

%typemap(in) short {
long temp; /* Temporary value */
if (Tcl_GetLongFromObj(interp, $input, &temp) != TCL_OK) {
return TCL_ERROR;
}
$1 = (short) temp;

Of course, any variables that you declare inside a typemap are destroyed as soon as the typemap code has executed (they are not visible to other parts of the wrapper function or other
typemaps that might use the same variable names).

Occasionally, typemap code will be specified using a few alternative forms. For example:

$typemap(in) int "$1 = PyInt_ AsLong(S$input);"
%typemap(in) int %{

$1 = PyInt_AsLong($input);

%}

%typemap(in, noblock=1) int {

$1 = PyInt_AsLong($input);

}

These three forms are mainly used for cosmetics--the specified code is not enclosed inside a block scope when it is emitted. This sometimes results in a less complicated looking wrapper
function. Note that only the third of the three typemaps have the typemap code passed through the SWIG preprocessor.

14.4.2 Declaring new local variables

Sometimes it is useful to declare a new local variable that exists within the scope of the entire wrapper function. A good example of this might be an application in which you wanted to marshal
strings. Suppose you had a C++ function like this

int foo(std::string *s);

and you wanted to pass a native string in the target language as an argument. For instance, in Perl, you wanted the function to work like this:

14.4 Code generation rules 137

SWIG-4.2 Documentation

$x = foo("Hello World");

To do this, you can't just pass a raw Perl string as the std: : string * argument. Instead, you have to create a temporarystd: : string object, copy the Perl string data into it, and then
pass a pointer to the object. To do this, simply specify the typemap with an extra parameter like this:

%typemap(in) std::string * (std::string temp) {
unsigned int len;

char *s;

s = SvPV($input, len); /* Extract string data */
temp.assign(s, len); /* Assign to temp */

$1 = &temp; /* Set argument to point to temp */

In this case, temp becomes a local variable in the scope of the entire wrapper function. For example:

wrap_foo() {
std::string temp; <--- Declaration of temp goes here

/* Typemap code */
{

temp.assign(s, len);

When you set temp to a value, it persists for the duration of the wrapper function and gets cleaned up automatically on exit.

It is perfectly safe to use more than one typemap involving local variables in the same declaration. For example, you could declare a function as :

void foo(std::string *x, std::string *y, std::string *z);

This is safely handled because SWIG actually renames all local variable references by appending an argument number suffix. Therefore, the generated code would actually look like this:

wrap foo() {

int *argl; /* Actual arguments */

int *arg2;

int *arg3;

std::string templ; /* Locals declared in the typemap */
std::string temp2;

std::string temp3;

char *s;

unsigned int len;
templ.assign(s, len);
argl = *templ;

char *s;

unsigned int len;
temp2.assign(s, len);
arg2 = &temp2;

char *s;

unsigned int len;
temp3.assign(s, len);
arg3 = &temp3;

There is an exception: if the variable name starts with the_global_ prefix, the argument number is not appended. Such variables can be used throughout the generated wrapper function. For

example, the above typemap could be rewritten to use _global_temp instead of temp and the generated code would then contain a single _global_temp variable instead of temp1, temp2
and temp3:

$typemap(in) std::string * (std::string _global_temp) {
... as above

}

Some typemaps do not recognize local variables (or they may simply not apply). At this time, only typemaps that apply to argument conversion support this (input typemaps such as the "in"
typemap).

Note:

When declaring a typemap for multiple types, each type must have its own local variable declaration.

%typemap(in) const std::string *, std::string * (std::string temp) // NO!
// only std::string * has a local variable
// const std::string * does not (oops)

%typemap(in) const std::string * (std::string temp), std::string * (std::string temp) // Correct

14.4 Code generation rules

SWIG-4.2 Documentation

14.4.3 Special variables

Within all typemaps, the following special variables are expanded. This is by no means a complete list as some target languages have additional special variables which are documented in the
language specific chapters.

Variable Meaning
$n A C local variable corresponding to type nin the typemap pattern.
$argnum /Argument number. Only available in typemaps related to argument conversion
$n_name Argument name
H$n_type Real C datatype of type n.
$n_ltype Itype of type n
$n_mangle Mangled form of type n. For example _p_Foo

$n_descriptor Type descriptor structure for type n. For example SWIGTYPE_p_Foo. This is primarily used when interacting with the run-time type checker (described

later).
$*n_type Real C datatype of type nwith one pointer removed.
$*n_ltype Itype of type n with one pointer removed.

$*n_mangle |Mangled form of type n with one pointer removed.

$*n_descriptor | Type descriptor structure for type nwith one pointer removed.
H$&n_type Real C datatype of type nwith one pointer added.

H$&n7ltype Itype of type n with one pointer added.

H$&n7mangle Mangled form of type n with one pointer added.

H$&n_descriptor 'Type descriptor structure for type nwith one pointer added.
H$n_basetype Base typename with all pointers and qualifiers stripped.

Within the table, $n refers to a specific type within the typemap specification. For example, if you write this

%typemap(in) int *INPUT {

}

then $1 refers to int *INPUT. If you have a typemap like this,

%typemap(in) (int argc, char *argv[]) {

}

then $1 refers to int argc and $2 refers tochar *argv(].

Substitutions related to types and names always fill in values from the actual code that was matched. This is useful when a typemap might match multiple C datatype. For example:

%typemap(in) int, short, long {
$1 = ($1_ltype) PyInt_AsLong($input);
}

In this case, $1_1type is replaced with the datatype that is actually matched.

When typemap code is emitted, the C/C++ datatype of the special variables $1 and $2 is always an "ltype." An "ltype" is simply a type that can legally appear on the left-hand side of a C
assignment operation. Here are a few examples of types and ltypes:

type ltype

int int

const int int

const int * int *

int [4] int *

int [4][5] int (*)[5]

In most cases a Itype is simply the C datatype with qualifiers stripped off. In addition, arrays are converted into pointers.

Variables such as $&1_type and $*1_type are used to safely modify the type by removing or adding pointers. Although not needed in most typemaps, these substitutions are sometimes
needed to properly work with typemaps that convert values between pointers and values.

If necessary, type related substitutions can also be used when declaring locals. For example:

$typemap(in) int * ($*1_type temp) {
temp = PyInt_ AsLong($input);
$1 = &temp;

}

There is one word of caution about declaring local variables in this manner. If you declare a local variable using a type substitution such as $1_1type temp, it won't work like you expect for
arrays and certain kinds of pointers. For example, if you wrote this,

%typemap(in) int [10][20] {
$1_ltype temp;
}

then the declaration of temp will be expanded as

int (*)[20] temp;

This is illegal C syntax and won't compile. There is currently no straightforward way to work around this problem in SWIG due to the way that typemap code is expanded and processed.
However, one possible workaround is to simply pick an alternative type such as void * and use casts to get the correct type when needed. For example:

14.4 Code generation rules

SWIG-4.2 Documentation

%typemap(in) int [10][20] {
void *temp;

(($1_1ltype) temp)[i][]j] = x; /* set a value */

Another approach, which only works for arrays is to use the $1_basetype substitution. For example:

%typemap(in) int [10][20] {
$1_basetype temp[10][20];

temp[i][]] = x; /* set a value */

14.4.4 Special variable macros

Special variable macros are like macro functions in that they take one or more input arguments which are used for the macro expansion. They look like macro/function calls but use the special

variable $ prefix to the macro name. Note that unlike normal macros, the expansion is not done by the preprocessor, it is done during the SWIG parsing/compilation stages. The following
special variable macros are available across all language modules.

14.4.4.1 $descriptor(type)

This macro expands into the type descriptor structure for any C/C++ type specified in type. It behaves like the$1_descriptor special variable described above except that the type to
expand is taken from the macro argument rather than inferred from the typemap type. For example, $descriptor(std::vector<int> *) will expand into
SWIGTYPE_p std__ vectorT_int_t. This macro is mostly used in the scripting target languages and is demonstrated later in the Run-time type checker usage section.

14.4.4.2 $typemap(method, typepattern)

This macro uses the pattern matching rules described earlier to lookup and then substitute the special variable macro with the code in the matched typemap. The typemap to search for is
specified by the arguments, where method is the typemap method name and typepattern is a type pattern as per the $typemap specification in the Defining a typemap section.

The special variables within the matched typemap are expanded into those for the matched typemap type, not the typemap within which the macro is called. In practice, there is little use for
this macro in the scripting target languages. It is mostly used in the target languages that are statically typed as a way to obtain the target language type given the C/C++ type and more
commonly only when the C++ type is a template parameter.

The example below is for C# only and uses some typemap method names documented in the C# chapter, but it shows some of the possible syntax variations.

%typemap(cstype) unsigned long "uint"
%typemap(cstype) unsigned long bb "bool"
%typemap(cscode) BarClass %{
void foo($typemap(cstype, unsigned long aa) varl,
$typemap(cstype, unsigned long bb) var2,
$typemap(cstype, (unsigned long bb)) var3,
$typemap(cstype, unsigned long) var4)
{
// do something
}
%}

The result is the following expansion

%typemap(cstype) unsigned long "uint"
%typemap(cstype) unsigned long bb "bool"
%typemap (cscode) BarClass %{
void foo(uint varl,
bool var2,
bool var3,
uint var4)
{
// do something
}
%}

14.4.4.3 $typemap(method:attribute, typepattern)

An enhanced version of $typemap provides access to typemap attributes by appending a colon and the attribute name after the method name. In the example below, "cstype" is the typemap
method and "out" is the typemap attribute.

%typemap(cstype, out="object") XClass "XClass"
%typemap(cscode) BarClass %{
$typemap(cstype:out, XClass) bar()
{
return null;

}

which expands to

object bar()
{
return null;

}

Compatibility note: Support for typemap attributes in $typemap was introduced in SWIG-4.1.0.
14.4.5 Special variables and typemap attributes

As of SWIG-3.0.7 typemap attributes will also expand special variables and special variable macros.

14.4 Code generation rules

140

SWIG-4.2 Documentation

Example usage showing the expansion in the 'out" attribute (C# specific) as well as the main typemap body:

$typemap(ctype, out="$*1 ltype") unsigned int& "$*1_ltype"

is equivalent to the following as $*1_1ltype expands tounsigned int:

%typemap(ctype, out="unsigned int") unsigned int& "unsigned int"

14.4.6 Special variables combined with special variable macros

Special variables can also be used within special variable macros. The special variables are expanded before they are used in the special variable macros.

Consider the following C# typemaps:

%typemap(cstype) unsigned int "uint"
$typemap(cstype, out="S$typemap(cstype, $*1_ltype)") unsigned int& "S$typemap(cstype, $*1_ltype)"

Special variables are expanded first and hence the above is equivalent to:

%typemap(cstype) unsigned int "uint"
%typemap(cstype, out="$typemap(cstype, unsigned int)") unsigned int& "S$typemap(cstype, unsigned int)"

which then expands to:

%typemap(cstype) unsigned int "uint"
%typemap(cstype, out="uint") unsigned int& "uint"

14.5 Common typemap methods

The family of typemaps recognized by a language module may vary. However, the following typemap methods are nearly universal:
14.5.1 "in" typemap

The "in" typemap is used to convert function arguments from the target language to C. For example:

%typemap(in) int {
$1 = PyInt AsLong($input);
}

The following special variables are available:

$input - Input object holding value to be converted.
$symname - Name of function/method being wrapped

This is probably the most commonly redefined typemap because it can be used to implement customized conversions.

In addition, the "in" typemap allows the number of converted arguments to be specified. The numinputs attributes facilitates this. For example:

// Ignored argument.

%typemap(in, numinputs=0) int *out (int temp) {
$1 = &temp;

}

At this time, only zero or one arguments may be converted. When numinputs is set to 0, the argument is effectively ignored and cannot be supplied from the target language. The argument
is still required when making the C/C++ call and the above typemap shows the value used is instead obtained from a locally declared variable called temp. Usually numinputs is not
specified, whereupon the default value is 1, that is, there is a one to one mapping of the number of arguments when used from the target language to the C/C++ call. Multi-argument typemaps
provide a similar concept where the number of arguments mapped from the target language to C/C++ can be changed for multiple adjacent C/C++ arguments.

14.5.2 "typecheck” typemap

The "typecheck" typemap is used to support overloaded functions and methods. It merely checks an argument to see whether or not it matches a specific type. For example:

$typemap (typecheck, precedence=SWIG_TYPECHECK INTEGER) int {
$1 = PyInt_Check($input) ? 1 : 0;
}

For typechecking, the $1 variable is always a simple integer that is set to 1 or 0 depending on whether or not the input argument is the correct type. Set to 1 if the input argument is the correct
type otherwise set to 0.

If you define new "in" typemaps and your program uses overloaded methods, you should also define a collection of "typecheck" typemaps. More details about this follow in the Typemaps and
overloading section.

14.5.3 "out" typemap

The "out" typemap is used to convert function/method return values from C into the target language. For example:

%typemap(out) int {
$result = PyInt_FromLong($1l);
}

The following special variables are available.

14.5 Common typemap methods

SWIG-4.2 Documentation

$result - Result object returned to target language.
$symname - Name of function/method being wrapped

The "out" typemap supports an optional attribute flag called "optimal". This is for code optimisation and is detailed in the Optimal code generation when returning by value section.
14.5.4 "arginit" typemap

The "arginit" typemap is used to set the initial value of a function argument--before any conversion has occurred. This is not normally necessary, but might be useful in highly specialized
applications. For example:

// Set argument to NULL before any conversion occurs
%typemap(arginit) int *data {

$1 = NULL;
}

14.5.5 "default” typemap

The "default” typemap is used to turn an argument into a default argument. For example:

%typemap(default) int flags {
$1 = DEFAULT FLAGS;
}

int foo(int x, int y, int flags);

The primary use of this typemap is to either change the wrapping of default arguments or specify a default argument in a language where they aren't supported (like C). Target languages that
do not support optional arguments, such as Java and C#, effectively ignore the value specified by this typemap as all arguments must be given.

Once a default typemap has been applied to an argument, all arguments that follow must have default values. See the Default/optional arguments section for further information on default
argument wrapping.

14.5.6 "check" typemap

The "check" typemap is used to supply value checking code during argument conversion. The typemap is applied after arguments have been converted. For example:

%typemap(check) int positive {
if ($1 <= 0) {
SWIG_exception(SWIG ValueError, "Expected positive value.");
}
}

14.5.7 "argout" typemap

The "argout" typemap is used to return values from arguments. This is most commonly used to write wrappers for C/C++ functions that need to return multiple values. The "argout" typemap is
almost always combined with an "in" typemap---possibly to ignore the input value. For example:

/* Set the input argument to point to a temporary variable */
%typemap(in, numinputs=0) int *out (int temp) {

$1 = &temp;
}

%typemap(argout) int *out {
// RAppend output value $1 to $result

}
The following special variables are available.
$result - Result object returned to target language.
$input - The original input object passed.
$symname - Name of function/method being wrapped

The code supplied to the "argout" typemap is always placed after the "out" typemap. If multiple return values are used, the extra return values are often appended to return value of the
function.

See the typemaps. i library file for examples.
14.5.8 "freearg"” typemap

The "freearg" typemap is used to cleanup argument data. It is only used when an argument might have allocated resources that need to be cleaned up when the wrapper function exits. The
"freearg” typemap usually cleans up argument resources allocated by the "in" typemap. For example:

// Get a list of integers
%typemap(in) int *items {
int nitems = Length($input);
$1 = (int *) malloc(sizeof(int)*nitems);

}

// Free the list

%typemap(freearg) int *items {
free($1);

}

The "freearg" typemap inserted at the end of the wrapper function, just before control is returned back to the target language. This code is also placed into a special variable $cleanup that
may be used in other typemaps whenever a wrapper function needs to abort prematurely.

14.5.9 "newfree" typemap

The "newfree" typemap is used in conjunction with the $newobject directive and is used to deallocate memory used by the return result of a function. For example:

14.5 Common typemap methods

142

SWIG-4.2 Documentation

%typemap (newfree) string * {
delete $1;
}
%typemap(out) string * {
$result = PyString FromString($l->c_str());
}

%newobject foo;

string *foo();

See Object ownership and %newobject for further details.
14.5.10 "ret" typemap

The "ret" typemap is not used very often, but can be useful for anything associated with the return type, such as resource management, return value error checking, etc. Usually this can all be
done in the "out" typemap, but sometimes it is handy to use the "out" typemap code untouched and add to the generated code using the code in the "ret" typemap. One such case is memory
clean up. For example, a stringheap_t type is defined indicating that the returned memory must be deleted and a string_t type is defined indicating that the returned memory must not be
deleted.

$typemap(ret) stringheap_t %{
free($1);
%}

typedef char * string t;
typedef char * stringheap_t;

string_t MakeStringl();
stringheap_t MakeString2();

The "ret" typemap above will only be used for MakeString2, but both functions will use the default "out" typemap for char * provided by SWIG. The code above would ensure the
appropriate memory is freed in all target languages as the need to provide custom "out" typemaps (which involve target language specific code) is not necessary.

This approach is an alternative to using the "newfree" typemap and $newobject as there is no need to list all the functions that require the memory cleanup, it is purely done on types.

14.5.11 "memberin” typemap

The "memberin" typemap is used to copy data from an already converted input value into a structure member. It is typically used to handle array members and other special cases. For
example:

%typemap (memberin) int [4] {
memmove ($1, $input, 4*sizeof(int));

}

It is rarely necessary to write "memberin" typemaps---SWIG already provides a default implementation for arrays, strings, and other objects.
14.5.12 "varin" typemap
The "varin" typemap is used to convert objects in the target language to C for the purposes of assigning to a C/C++ global variable. This is implementation specific.
14.5.13 "varout" typemap
The "varout" typemap is used to convert a C/C++ object to an object in the target language when reading a C/C++ global variable. This is implementation specific.
14.5.14 "throws" typemap
The "throws" typemap is only used when SWIG parses a C++ method with an exception specification or has the $catches feature attached to the method (see Exception handling with

%catches). It provides a default mechanism for handling C++ methods that have declared the exceptions they will throw. The purpose of this typemap is to convert a C++ exception into an
error or exception in the target language. It is slightly different to the other typemaps as it is based around the exception type rather than the type of a parameter or variable. For example:

%typemap(throws) const char * %{
PyErr_SetString(PyExc_RuntimeError, $1);
SWIG fail;

%}

// Either an exception specification on the method
void bar() throw (const char *);

// Or a %$catches feature attached to the method
%catches(const char *) bar();
void bar();

As can be seen from the resulting generated code below, SWIG generates an exception handler when wrapping the bar function with the catch block comprising the "throws" typemap content.

try {
bar();

} catch(char const *_e) {
PyErr_SetString(PyExc_RuntimeError, _e);
SWIG_fail;

}

Note that if your methods do not have an exception specification but they do throw exceptions and you are not using $catches, SWIG cannot know how to deal with them. Please also see
the Exception handling with %exception section for another way to handle exceptions.

14.6 Some typemap examples

This section contains a few examples. Consult language module documentation for more examples.

14.6.1 Typemaps for arrays

14.6 Some typemap examples

SWIG-4.2 Documentation

A common use of typemaps is to provide support for C arrays appearing both as arguments to functions and as structure members.

For example, suppose you had a function like this:

void set_vector(int type, float value[4]);

If you wanted to handle £loat value[4] as a list of floats, you might write a typemap similar to this:

%typemap(in) float value[4] (float temp[4]) {
int ij;
if (!PySequence_Check($input)) {
PyErr_SetString(PyExc_ValueError, "Expected a sequence");
SWIG_fail;

}

if (PySequence Length($input) != 4) {
PyErr_SetString(PyExc_ValueError, "Size mismatch. Expected 4 elements");
SWIG fail;

}

for (i = 0; i < 4; i++) {
PyObject *o = PySequence_GetItem($input, i);
if (PyNumber_Check(o)) {
temp[i] = (float) PyFloat_AsDouble(o);
} else {
PyErr_SetString(PyExc_ValueError, "Sequence elements must be numbers");
SWIG_fail;

In this example, the variable temp allocates a small array on the C stack. The typemap then populates this array and passes it to the underlying C function.

When used from Python, the typemap allows the following type of function call:

>>> set_vector(type, [1, 2.5, 5, 20])

If you wanted to generalize the typemap to apply to arrays of all dimensions you might write this:

$typemap(in) float value[ANY] (float temp[$1_dim0]) {
int i;
if (!PySequence_ Check($input)) {
PyErr_SetString(PyExc_ValueError, "Expected a sequence");
SWIG fail;
}
if (PySequence_Length($input) != $1_dim0) {
PyErr_SetString(PyExc_ValueError, "Size mismatch. Expected $1_dim0 elements");
SWIG_fail;
¥
for (i = 0; i < $1_dim0; i++) {
PyObject *o = PySequence_GetItem($input, i);
if (PyNumber_Check(o)) {
temp[i] = (float) PyFloat_AsDouble(o);
} else {
PyErr_SetString(PyExc_ValueError, "Sequence elements must be numbers");
SWIG fail;

In this example, the special variable $1_dim0 is expanded with the actual array dimensions. Multidimensional arrays can be matched in a similar manner. For example:

$typemap(in) float matrix[ANY][ANY] (float temp[$1_dim0][$1_diml]) {
... convert a 2d array ...

}

For large arrays, it may be impractical to allocate storage on the stack using a temporary variable as shown. To work with heap allocated data, the following technique can be used.

%typemap(in) float value[ANY] {
int i;
if (!PySequence_Check($input)) {
PyErr_SetString(PyExc_ValueError, "Expected a sequence");

SWIG_failj;

}

if (PySequence_Length($input) != $1_dim0) {
PyErr_SetString(PyExc_ValueError, "Size mismatch. Expected $1_dim0 elements");
SWIG fail;

}
$1 = (float *) malloc($1_dimO*sizeof(float));
for (i = 0; i < $1_dim0; i++) {
PyObject *o = PySequence_GetItem($input, i);
if (PyNumber_Check(o)) {
$1[i] = (float) PyFloat_AsDouble(o);
} else {
free($1);
PyErr_SetString(PyExc_ValueError, "Sequence elements must be numbers");
SWIG fail;
}
}
}
%typemap(freearg) float value[ANY] {
free($1);

14.6 Some typemap examples

144

SWIG-4.2 Documentation

In this case, an array is allocated using malloc. The freearg typemap is then used to release the argument after the function has been called.

Another common use of array typemaps is to provide support for array structure members. Due to subtle differences between pointers and arrays in C, you can't just "assign” to a array
structure member. Instead, you have to explicitly copy elements into the array. For example, suppose you had a structure like this:

struct SomeObject {
float value[4];

}i

When SWIG runs, it won't produce any code to set the vec member. You may even get a warning message like this:

$ swig -python example.i
example.i:10: Warning 462: Unable to set variable of type float [4].

These warning messages indicate that SWIG does not know how you want to set the vec field.

To fix this, you can supply a special "memberin" typemap like this:

%typemap (memberin) float [ANY] {
int i;
for (i = 0; i < $1_dim0; i++) {
$1[i] = $input[i];
}
}

The memberin typemap is used to set a structure member from data that has already been converted from the target language to C. In this case, $input is the local variable in which
converted input data is stored. This typemap then copies this data into the structure.

When combined with the earlier typemaps for arrays, the combination of the "in" and "memberin" typemap allows the following usage:

>>> s = SomeObject()
>>> s.x = [1, 2.5, 5, 10]

Related to structure member input, it may be desirable to return structure members as a new kind of object. For example, in this example, you will get very odd program behavior where the
structure member can be set nicely, but reading the member simply returns a pointer:

>>> s = SomeObject()

>>> s.x = [1, 2.5, 5, 10]
>>> print s.x
_1008fea8_p float

>>>

To fix this, you can write an "out" typemap. For example:

%typemap(out) float [ANY] {
int i;
$result = PyList_New($1_dim0);
for (i = 0; i < $1_dim0; i++) {
PyObject *o = PyFloat_ FromDouble((double) $1[i]);
PyList_SetItem($result, i, o);
}
}

Now, you will find that member access is quite nice:

>>> s = SomeObject()

>>> s.x = [1, 2.5, 5, 10]
>>> print s.x

[1, 2.5, 5, 10]

Compatibility Note: SWIG1.1 used to provide a special "memberout" typemap. However, it was mostly useless and has since been eliminated. To return structure members, simply use the
"out" typemap.

14.6.2 Implementing constraints with typemaps

One particularly interesting application of typemaps is the implementation of argument constraints. This can be done with the "check” typemap. When used, this allows you to provide code for
checking the values of function arguments. For example:

$module math

%typemap (check) double posdouble {
if ($1 < 0) {
croak("Expecting a positive number");
}
}

double sqgrt(double posdouble);

This provides a sanity check to your wrapper function. If a negative number is passed to this function, a Perl exception will be raised and your program terminated with an error message.

This kind of checking can be particularly useful when working with pointers. For example:

14.6 Some typemap examples

SWIG-4.2 Documentation

%typemap (check) Vector * {
if ($1 == 0) {
PyErr_SetString(PyExc_TypeError, "NULL Pointer not allowed");
SWIG_fail;
}
}

will prevent any function involving a vector * from accepting a NULL pointer. As a result, SWIG can often prevent a potential segmentation faults or other run-time problems by raising an
exception rather than blindly passing values to the underlying C/C++ program.

14.7 Typemaps for multiple target languages

The code within typemaps is usually language dependent, however, many target languages support the same typemaps. In order to distinguish typemaps across different languages, the
preprocessor should be used. For example, the "in" typemap for Perl and Ruby could be written as:

#if defined(SWIGPERL)
$typemap(in) int "$1 = ($1_ltype) SvIV(S$input);"
#elif defined(SWIGRUBY)
%typemap(in) int "$1 = NUM2INT($input);"
#else
#warning no "in" typemap defined
#endif

The full set of language specific macros is defined in the Conditional Compilation section. The example above also shows a common approach of issuing a warning for an as yet unsupported
language.

Compatibility note: In SWIG-1.1 different languages could be distinguished with the language name being put within the $typemap directive, but this was deprecated in SWIG 1.3.28 and
support finally dropped completely in SWIG 4.1.0 so you'll need to update any remaining uses to use the approach above. For example,
gtypemap(ruby, in) int "$1 = NUM2INT(Sinput);".

14.8 Optimal code generation when returning by value

The "out" typemap is the main typemap for return types. This typemap supports an optional attribute flag called "optimal”, which is for reducing the number of temporary variables and the
amount of generated code, thereby giving the compiler the opportunity to use return value optimization for generating faster executing code. It only really makes a difference when returning
objects by value and has some limitations on usage, as explained later on.

When a function returns an object by value, SWIG generates code that instantiates the default type on the stack then assigns the value returned by the function call to it. A copy of this object is
then made on the heap and this is what is ultimately stored and used from the target language. This will be clearer considering an example. Consider running the following code through SWIG:

%typemap(out) SWIGTYPE %{
$result = new $1_ltype($1);
%}

%inline %{
#include <iostream>
using namespace std;

struct XX {
XX () { cout << "XX()" << endl; }
XX(int i) { cout << "XX(" << i << ")" << endl; }
XX (const XX &other) { cout << "XX(const XX &)" << endl; }
XX & operator =(const XX &other) { cout << "operator=(const XX &)" << endl; return *this; }
~XX() { cout << "~XX()" << endl; }
static XX create() {
return XX(0);
}
Yi
%}

The "out" typemap shown is the default typemap for C# when returning objects by value. When making a call to XX: :create () from C#, the output is as follows:

XX()

XX(0)

operator=(const XX &)
~XX()

XX (const XX &)

~XX()

~XX()

Note that three objects are being created as well as an assignment. Wouldn't it be great if the XX: : create () method was the only time a constructor was called? As the method returns by
value, this is asking a lot and the code that SWIG generates by default makes it impossible for the compiler to use return value optimisation (RVO). However, this is where the "optimal”
attribute in the "out" typemap can help out. If the typemap code is kept the same and just the "optimal" attribute specified like this:

$typemap(out, optimal="1") SWIGTYPE 3%{
$result = new $1_ltype($1);
%}

then when the code is run again, the output is simply:

XX(0)
~XX()

How the "optimal" attribute works is best explained using the generated code. Without "optimal”, the generated code is:

SWIGEXPORT void * SWIGSTDCALL CSharp XX create() {
void * jresult ;
XX result;

14.7 Typemaps for multiple target languages

SWIG-4.2 Documentation

result = XX::create();
jresult = new XX(result);
return jresult;

}

With the "optimal" attribute, the code is:

SWIGEXPORT void * SWIGSTDCALL CSharp XX create() {
void * jresult ;
jresult = new XX(XX::create());
return jresult;

}

The major difference is the result temporary variable holding the value returned from XX : :create () is no longer generated and instead the copy constructor call is made directly from the
value returned by XX: :create (). With modern compilers implementing RVO, the copy is not actually done, in fact the object is never created on the stack in XX: :create() atall, itis
simply created directly on the heap. In the first instance, the $1 special variable in the typemap is expanded into result. In the second instance, $1 is expanded into XX: :create () and this
is essentially what the "optimal" attribute is telling SWIG to do.

The "optimal" attribute optimisation is not turned on by default as it has a number of restrictions. Firstly, some code cannot be condensed into a simple call for passing into the copy constructor.
One common occurrence is when %exception is used. Consider adding the following $exception to the example:

%exception XX::create() %{
try {
$action
} catch(const std::exception &e) {
cout << e.what() << endl;
}
%}

SWIG can detect when the "optimal" attribute cannot be used and will ignore it and in this case will issue the following warning:

example.i:28: Warning 474: Method XX::create() usage of the optimal attribute ignored

example.i:14: Warning 474: in the out typemap as the following cannot be used to generate
optimal code:
try {

result = XX::create();
} catch(const std::exception &e) {
cout << e.what() << endl;

}

It should be clear that the above code cannot be used as the argument to the copy constructor call, that is, for the $1 substitution.

Secondly, if the typemap uses $1 more than once, then multiple calls to the wrapped function will be made. Obviously that is not very optimal. In fact SWIG attempts to detect this and will
issue a warning something like:

example.i:21: Warning 475: Multiple calls to XX::create() might be generated due to
example.i:7: Warning 475: optimal attribute usage in the out typemap.

However, it doesn't always get it right, for example when $1 is within some commented out code.
14.9 Multi-argument typemaps

So far, the typemaps presented have focused on the problem of dealing with single values. For example, converting a single input object to a single argument in a function call. However,
certain conversion problems are difficult to handle in this manner. As an example, consider the example at the very beginning of this chapter:

int foo(int argc, char *argv[]);

Suppose that you wanted to wrap this function so that it accepted a single list of strings like this:

>>> foo(["ale", "lager", "stout"])

To do this, you not only need to map a list of strings to char *argv[], but the value ofint argc is implicitly determined by the length of the list. Using only simple typemaps, this type of
conversion is possible, but extremely painful. Multi-argument typemaps help in this situation.

A multi-argument typemap is a conversion rule that specifies how to convert a single object in the target language to a set of consecutive function arguments in C/C++. For example, the
following multi-argument maps perform the conversion described for the above example:

%typemap(in) (int argc, char *argv[]) {
int ij;
if (!PyList_Check($input)) {
PyErr_SetString(PyExc_ValueError, "Expecting a list");
SWIG_fail;

}
$1 = PyList Size($input);
$2 = (char **) malloc(($1+1)*sizeof(char *));

for (i = 0; i < $1; i++) {

PyObject *s = PyList GetItem($input, i);

if (!PyString_Check(s)) {
free($2);
PyErr_SetString(PyExc_ValueError, "List items must be strings");
SWIG_fail;

}

$2[i] = PyString_AsString(s);

}
$2[i] = 0;
}

%typemap (freearg) (int argc, char *argv[]) {

14.9 Multi-argument typemaps

SWIG-4.2 Documentation

free($2);
}

/* Required for C++ method overloading */

$typecheck (SWIG_TYPECHECK_STRING_ARRAY) (int argc, char *argv[]) {
$1 = PyList Check($input) ? 1 : 0;

}

A multi-argument map is always specified by surrounding the arguments with parentheses as shown. For example:

%typemap(in) (int argc, char *argv[]) { ... }

Within the typemap code, the variables $1, $2, and so forth refer to each type in the map. All of the usual substitutions apply--just use the appropriate $1 or $2 prefix on the variable name
(e.g., $2_type, $1_1ltype, etc.)

Multi-argument typemaps always have precedence over simple typemaps and SWIG always performs longest-match searching. Therefore, you will get the following behavior:

%typemap(in) int argc { ... typemap 1 ... }
%typemap(in) (int argc, char *argv[]) { ... typemap 2 ...
%typemap(in) (int argc, char *argv[], char *env[]) { ... typemap 3 ... }
int foo(int argc, char *argv[]); // Uses typemap 2

int bar(int argc, int x); // Uses typemap 1

int spam(int argc, char *argv[], char *env[]); // Uses typemap 3

It should be stressed that multi-argument typemaps can appear anywhere in a function declaration and can appear more than once. For example, you could write this:

%typemap(in) (int scount, char *swords[]) { ... }
%typemap(in) (int wcount, char *words[]) { ... }

void search_words(int scount, char *swords[], int wcount, char *words[], int maxcount);

Other directives such as $apply and $clear also work with multi-argument maps. For example:

%apply (int argc, char *argv[]) {
(int scount, char *swords[]),
(int wcount, char *words[])
}i
%clear (int scount, char *swords[]), (int wcount, char *words[]);

Don't forget to also provide a suitable typemap for overloaded functions, such as $typecheck shown for foo above. This is only required if the function is overloaded in C++.

Although multi-argument typemaps may seem like an exotic, little used feature, there are several situations where they make sense. First, suppose you wanted to wrap functions similar to the
low-level read() andwrite() system calls. For example:

typedef unsigned int size_ t;

int read(int fd, void *rbuffer, size t len);
int write(int fd, void *wbuffer, size_t len);

As is, the only way to use the functions would be to allocate memory and pass some kind of pointer as the second argument---a process that might require the use of a helper function.
However, using multi-argument maps, the functions can be transformed into something more natural. For example, you might write typemaps like this:

// typemap for an outgoing buffer
$typemap(in) (void *wbuffer, size_t len) {
if (!PyString_Check($input)) {
PyErr_SetString(PyExc_ValueError, "Expecting a string");
SWIG_fail;
}
$1 = (void *) PyString AsString($input);
$2 = PyString_Size($input);
}

// typemap for an incoming buffer
$typemap(in) (void *rbuffer, size_t len) {
if (!PyInt_Check($input)) {
PyErr_SetString(PyExc_ValueError, "Expecting an integer");
SWIG_fail;
}
$2 = PyInt_AsLong($input);
if ($2 < 0) {
PyErr_SetString(PyExc_ValueError, "Positive integer expected");
SWIG_fail;
}
$1 = (void *) malloc($2);
}

// Return the buffer. Discarding any previous return result
$typemap(argout) (void *rbuffer, size_ t len) {
Py_XDECREF ($result); /* Blow away any previous result */
if (result < 0) { /* Check for I/O error */
free($1);
PyErr_SetFromErrno(PyExc_IOError);
return NULL;
}
$result = PyString FromStringAndSize($1l, result);
free($1);

14.9 Multi-argument typemaps

SWIG-4.2 Documentation

(note: In the above example, $result and result are two different variables. result is the real C datatype that was returned by the function. $result is the scripting language object
being returned to the interpreter.).

Now, in a script, you can write code that simply passes buffers as strings like this:

>>> f = example.open("Makefile")
>>> example.read(f, 40)

' TOP = ../..\nSWIG = $(TOP)/."
>>> example.read(f, 40)

'./swig\nSRCS = example.c\nTARGET '
>>> example.close(f)

0

>>> g = example.open("foo", example.O WRONLY | example.O_CREAT, 0644)
>>> example.write(g, "Hello world\n")

12

>>> example.write(g, "This is a test\n")

15

>>> example.close(g)

A number of multi-argument typemap problems also arise in libraries that perform matrix-calculations--especially if they are mapped onto low-level Fortran or C code. For example, you might
have a function like this:

int is_symmetric(double *mat, int rows, int columns);

In this case, you might want to pass some kind of higher-level object as an matrix. To do this, you could write a multi-argument typemap like this:

%typemap(in) (double *mat, int rows, int columns) {
MatrixObject *a;
a = GetMatrixFromObject($input); /* Get matrix somehow */

/* Get matrix properties */
$1 = GetPointer(a);

$2 = GetRows(a);

$3 = GetColumns(a);

This kind of technique can be used to hook into scripting-language matrix packages such as Numeric Python. However, it should also be stressed that some care is in order. For example,
when crossing languages you may need to worry about issues such as row-major vs. column-major ordering (and perform conversions if needed). Note that multi-argument typemaps cannot
deal with non-consecutive C/C++ arguments; a workaround such as a helper function re-ordering the arguments to make them consecutive will need to be written.

14.10 Typemap warnings
Warnings can be added to typemaps so that SWIG generates a warning message whenever the typemap is used. See the information in the issuing warnings section.
14.11 Typemap fragments

The primary purpose of fragments is to reduce code bloat that repeated use of typemap code can lead to. Fragments are snippets of code that can be thought of as code dependencies of a
typemap. If a fragment is used by more than one typemap, then the snippet of code within the fragment is only generated once. Code bloat is typically reduced by moving typemap code into a
support function and then placing the support function into a fragment.

For example, if you have a very long typemap

%typemap(in) MyClass * {
MyClass *value = 0;

. many lines of marshalling code

$result = value;

}

the same marshalling code is often repeated in several typemaps, such as "in", "varin", "directorout”, etc. SWIG copies the code for each argument that requires the typemap code, easily
leading to code bloat in the generated code. To eliminate this, define a fragment that includes the common marshalling code:

%fragment ("AsMyClass", "header") {
MyClass *AsMyClass(PyObject *obj) {
MyClass *value = 0;

. many lines of marshalling code

return value;
}
}

%typemap(in, fragment="AsMyClass") MyClass * {
$result = AsMyClass($input);
}

%typemap(varin, fragment="AsMyClass") MyClass * {
$result = AsMyClass($input);
}

When the "in" or "varin" typemaps for MyClass are required, the contents of the fragment called "AsMyClass" are added to the "header" section within the generated code, and then the
typemap code is emitted. Hence, the method AsMyClass will be generated into the wrapper code before any typemap code that callls it.

To define a fragment you need a fragment name, a section name for generating the fragment code into, and the code itself. See Code insertion blocks for a full list of section names. Usually
the section name used is "header". Different delimiters can be used:

%fragment ("my_name", "header") %{ ... %}
%fragment ("my_name", "header") { ... }

14.10 Typemap warnings 149

SWIG-4.2 Documentation

$fragment ("my_name", "header") " ... "

and these follow the usual preprocessing rules mentioned in the Preprocessing delimiters section. The following are some rules and guidelines for using fragments:

1. Afragment is added to the wrapping code only once. When using the MyClass * typemaps above and wrapping the method:

void foo(MyClass *a, MyClass *b);

the generated code will look something like:

MyClass *AsMyClass(PyObject *obj) {

}

void _wrap foo(...) {
argl = AsMyClass(objl);
arg2 = AsMyClass(obj2);

foo(argl, arg2);

even as there is duplicated typemap code to process both a and b, the AsMyClass method will be defined only once.

2. Afragment should only be defined once. If there is more than one definition, the first definition is the one used. All other definitions are silently ignored. For example, if you have

$fragment ("AsMyClass", "header") { ...definition 1l... }

%fragment ("AsMyClass", "header") { ...definition 2... }

only the first definition is used. In this way you can override the default fragments in a SWIG library by defining your fragment before the library $include. Note that this behavior is the
opposite to typemaps, where the last typemap defined/applied prevails. Fragments follow the first-in-first-out convention since they are intended to be global, while typemaps are intended
to be locally specialized.

3. Fragment names cannot contain commas.

4. A fragment can use one or more additional fragments, for example:

¢fragment ("<limits.h>", "header") $%{
#include <limits.h>
%}

$fragment ("AsMyClass", "header", fragment="<limits.h>") {
MyClass *AsMyClass(PyObject *obj) {
MyClass *value = 0;

... some marshalling code ...

if (ival < CHAR_MIN /*defined in <limits.h>*/) {
} else {

}

return value;

in this case, when the "AsMyClass" fragment is emitted, it also triggers the inclusion of the "<limits.h>" fragment.

5. A fragment can have dependencies on a number of other fragments, for example:

$fragment ("bigfragment", "header", fragment="fragl", fragment="frag2", fragment="frag3") "";

When the "bigfragment"” is used, the three dependent fragments "frag1", "frag2" and "frag3" are also pulled in. Note that as "bigframent" is empty (the empty string - "), it does not add
any code itself, but merely triggers the inclusion of the other fragments.

o

. A typemap can also use more than one fragment:

$typemap("in", fragment="fragl", fragment="frag2", fragment="frag3") {...}

Compatibility note: The ability to use multiple fragment keys as shown above was introduced in SWIG-4.1.0.

Multiple fragments can alternatively be specified as a comma separated list value in a single fragment key. Note that no whitespace is allowed within this comma separated list. The
following is the equivalent to the above:

$typemap(in, fragment="fragl,frag2,frag3") {...}

which in turn is functionally equivalent to:

%typemap(in, fragment="bigfragment") {...}

when used with the "bigfragment” defined above.

7. Finally, you can force the inclusion of a fragment at any point in the generated code as follows:

¢fragment ("bigfragment");

14.10 Typemap warnings

SWIG-4.2 Documentation

which, for example, is very useful inside a template class. Another useful case is when using 2extend inside a class where the additional code in the $extend block depends on the
contents of the fragment.

gfragment ("<limits.h>", "header") %{
#include <limits.h>
%}

struct X {
%extend {
$fragment ("<limits.h>");
bool check(short val) {
if (val < SHRT_MIN /*defined in <limits.h>*/) {
return true;
} else {
return false;

Forced inclusion of fragments can be used as a replacement for code insertion block, ensuring the code block is only generated once. Consider the contents of FileA.i below which first
uses a code insertion block and then a forced fragment inclusion to generate code:

// FileA.i
%{
#include <stdio.h>
%}
gfragment ("<limits.h>");

and another file including the above:

// FileB.i
%$include "FileA.i"

The resulting code in the wrappers for FileB.i is:

#include <stdio.h>

#include <limits.h>

A note of caution must be mentioned when using ¢ fragment forced inclusion or code insertion blocks with $import. If $import is used instead:

// FileC.i
$import "FileA.i"

then nothing is generated in the resulting code in the wrappers for FileC.i. This is because %import is for collecting type information and does not result in any code being generated,
see File Imports.

Most readers will probably want to skip the next two sub-sections on advanced fragment usage unless a desire to really get to grips with some powerful but tricky macro and fragment usage
that is used in parts of the SWIG typemap library.

14.11.1 Fragment type specialization

Fragments can be type specialized. The syntax is as follows:

%fragment ("name", "header") { ...a type independent fragment... }
%fragment ("name" {type}, "header") { ...a type dependent fragment... }

where type is a C/C++ type. Like typemaps, fragments can also be used inside templates, for example:

template <class T>
struct A {
g$fragment ("incode" {A<T>}, "header") {
... 'incode' specialized fragment

}

%typemap(in, fragment="incode"{A<T>}) {
... here we use the 'type specialized' fragment "incode"{A<T>} ...
}
Yi

14.11.2 Fragments and automatic typemap specialization

Since fragments can be type specialized, they can be elegantly used to specialize typemaps. For example, if you have something like:

%fragment ("incode" {float}, "header") {
float in method_float(PyObject *obj) {

}
}

%fragment ("incode" {long}, "header") {
float in method_long(PyObject *obj) {

}
}

14.10 Typemap warnings

SWIG-4.2 Documentation

// %my_typemaps macro definition

$define %my_typemaps(Type)

%typemap(in, fragment="incode"{Type}) Type {
value = in_method_##Type(obj);

}

%enddef

¥my_typemaps(float);
¥my_typemaps(long);

then the proper "incode" {float} or "incode" {long} fragment will be used, and the in_method float and in_method_long methods will be called whenever thefloat or long
types are used as input parameters.

This feature is used a lot in the typemaps shipped in the SWIG library for some scripting languages. The interested (or very brave) reader can take a look at the fragments.swyg file shipped with
SWIG to see this in action.

14.12 The run-time type checker

Most scripting languages need type information at run-time. This type information can include how to construct types, how to garbage collect types, and the inheritance relationships between
types. If the language interface does not provide its own type information storage, the generated SWIG code needs to provide it.

Requirements for the type system:

Store inheritance and type equivalence information and be able to correctly re-create the type pointer.
Share type information between modules.

Modules can be loaded in any order, regardless of actual type dependency.

Avoid the use of dynamically allocated memory, and library/system calls in general.

Provide a reasonably fast implementation, minimizing the lookup time for all language modules.
Custom, language specific information can be attached to types.

Modules can be unloaded from the type system.

14.12.1 Implementation

The run-time type checker is used by many, but not all, of SWIG's supported target languages. The run-time type checker features are not required and are thus not used for statically typed
languages such as Java and C#. The scripting and scheme based languages rely on it and it forms a critical part of SWIG's operation for these languages.

When pointers, arrays, and objects are wrapped by SWIG, they are normally converted into typed pointer objects. For example, an instance of Foo * might be a string encoded like this:

_108e688_p_Foo

At a basic level, the type checker simply restores some type-safety to extension modules. However, the type checker is also responsible for making sure that wrapped C++ classes are
handled correctly---especially when inheritance is used. This is especially important when an extension module makes use of multiple inheritance. For example:

class Foo {
public:

int x;
}i

class Bar {
public:

int y;
}i

class FooBar : public Foo, public Bar {
public:

int z;
}i

When the class FooBar is organized in memory, it contains the contents of the classes Foo and Bar as well as its own data members. For example:

FooBar --> | ——————————- | <-- Foo
| int x |
|-—-=-—-———- | <-- Bar
| int y |
[— |
| int z

Because of the way that base class data is stacked together, the casting of a Foobar * to either of the base classes may change the actual value of the pointer. This means that it is
generally not safe to represent pointers using a simple integer or a bare void * ---type tags are needed to implement correct handling of pointer values (and to make adjustments when
needed).

In the wrapper code generated for each language, pointers are handled through the use of special type descriptors and conversion functions. For example, if you look at the wrapper code for
Python, you will see code similar to the following (simplified for brevity):

if (!SWIG_IsOK(SWIG_ConvertPtr(obj0, (void **) &argl, SWIGTYPE p Foo, 0))) {
SWIG_exception fail(SWIG_TypeError, "in method 'Grabval',6 expecting type Foo");
}

In this code, SWIGTYPE_p_Foo is the type descriptor that describes Foo *. The type descriptor is actually a pointer to a structure that contains information about the type name to use in the
target language, a list of equivalent typenames (via typedef or inheritance), and pointer value handling information (if applicable). The SWIG_ConvertPtr() function is simply a utility function
that takes a pointer object in the target language and a type-descriptor object and uses this information to generate a C++ pointer. The SWIG_IsOK macro checks the return value for errors
and SWIG_exception_fail can be called to raise an exception in the target language. However, the exact name and calling conventions of the conversion function depends on the target
language (see language specific chapters for details).

The actual type code is in swigrun.swg, and gets inserted near the top of the generated swig wrapper file. The phrase "a type X that can cast into a type Y" means that given a type X, it can be

converted into a type Y. In other words, X is a derived class of Y or X is a typedef of Y. The structure to store type information looks like this:

/* Structure to store information on one type */
typedef struct swig_type_info {
const char *name; /* mangled name of this type */
const char *str; /* human readable name for this type */

14.12 The run-time type checker

152

SWIG-4.2 Documentation

swig_dycast_func dcast; /* dynamic cast function down a hierarchy */
struct swig_cast_info *cast; /* Linked list of types that can cast into this type */
void *clientdata; /* Language specific type data */

-~

swig_type_info;

/* Structure to store a type and conversion function used for casting */
typedef struct swig_cast_info {

swig_type_info *type; /* pointer to type that is equivalent to this type */
swig_converter_func converter; /* function to cast the void pointers */

struct swig_cast_info *next; /* pointer to next cast in linked list */

struct swig_cast_info *prev; /* pointer to the previous cast */

} swig_cast_info;

Each swig_type_info stores a linked list of types that it is equivalent to. Each entry in this doubly linked list stores a pointer back to another swig_type_info structure, along with a pointer to
a conversion function. This conversion function is used to solve the above problem of the FooBar class, correctly returning a pointer to the type we want.

The basic problem we need to solve is verifying and building arguments passed to functions. So going back to the SWIG_ConvertPtr () function example from above, we are expecting a
Foo * and need to check ifob3j0 is in fact aFoo * . From before, SWIGTYPE p_Foo is just a pointer to theswig_type_info structure describing Foo *. So we loop through the linked list
of swig_cast_info structures attached to SWIGTYPE_p_Foo. If we see that the type ofobj0 is in the linked list, we pass the object through the associated conversion function and then
return a positive. If we reach the end of the linked list without a match, then obj0 can not be converted to a Foo * and an error is generated.

Another issue needing to be addressed is sharing type information between multiple modules. More explicitly, we need to have ONE swig_type_info for each type. If two modules both use
the type, the second module loaded must lookup and use the swig_type_info structure from the module already loaded. Because no dynamic memory is used and the circular dependencies of
the casting information, loading the type information is somewhat tricky, and not explained here. A complete description is in the Lib/swiginit.swg file (and near the top of any generated
file).

Each module has one swig_module_info structure which looks like this:

/* Structure used to store module information

* Each module generates one structure like this, and the runtime collects

* all of these structures and stores them in a circularly linked list.*/
typedef struct swig _module info {
swig_type_info **types; /* Array of pointers to swig_type_info structs in this module */
int size; /* Number of types in this module */
struct swig_module_info *next; /* Pointer to next element in circularly linked list */
swig_type_info **type_ initial; /* Array of initially generated type structures */
swig_cast_info **cast_initial; /* Array of initially generated casting structures */
void *clientdata; /* Language specific module data */
swig_module info;

-~

Each module stores an array of pointers to swig_type_info structures and the number of types in this module. So when a second module is loaded, it finds the swig_module_info
structure for the first module and searches the array of types. If any of its own types are in the first module and have already been loaded, it uses those swig_type_info structures rather
than creating new ones. These swig_module_info structures are chained together in a circularly linked list.

14.12.2 Usage

This section covers how to use these functions from typemaps. To learn how to call these functions from external files (not the generated _wrap.c file), see the External access to the run-time
system section.

When pointers are converted in a typemap, the typemap code often looks similar to this:

%typemap(in) Foo * {
if (!SWIG_IsOK(SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor, 0))) {
SWIG_exception fail(SWIG_TypeError, "in method '$symname', expecting type Foo");
}

The most critical part is the typemap is the use of the $1_descriptor special variable. When placed in a typemap, this is expanded into the SWIGTYPE_* type descriptor object above. As a
general rule, you should always use $1_descriptor instead of trying to hard-code the type descriptor name directly.

There is another reason why you should always use the $1_descriptor variable. When this special variable is expanded, SWIG marks the corresponding type as "in use." When type-tables
and type information is emitted in the wrapper file, descriptor information is only generated for those datatypes that were actually used in the interface. This greatly reduces the size of the type
tables and improves efficiency.

Occasionally, you might need to write a typemap that needs to convert pointers of other types. To handle this, the special variable macro $descriptor (type) covered earlier can be used to
generate the SWIG type descriptor name for any C datatype. For example:

%typemap(in) Foo * {
if (!SWIG_IsOK(SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor, 0))) {
Bar *temp;
if (!SWIG_IsSOK(SWIG_ConvertPtr($input, (void **) &temp, $descriptor(Bar *), 0))) {
SWIG_exception_fail (SWIG_TypeError, "in method '$symname', expecting type Foo or Bar");
}
$1 = (Foo *)temp;

The primary use of $descriptor (type) is when writing typemaps for container objects and other complex data structures. There are some restrictions on the argument---namely it must be
a fully defined C datatype. It can not be any of the special typemap variables.

In certain cases, SWIG may not generate type-descriptors like you expect. For example, if you are converting pointers in some non-standard way or working with an unusual combination of
interface files and modules, you may find that SWIG omits information for a specific type descriptor. To fix this, you may need to use the $types directive. For example:

%types(int *, short *, long *, float *, double *);

When %types is used, SWIG generates type-descriptor information even if those datatypes never appear elsewhere in the interface file.

Further details about the run-time type checking can be found in the documentation for individual language modules. Reading the source code may also help. The file Lib/swigrun.swgin
the SWIG library contains all of the source of the generated code for type-checking. This code is also included in every generated wrapped file so you probably just look at the output of SWIG
to get a better sense for how types are managed.

14.13 Typemaps and overloading

14.13 Typemaps and overloading

SWIG-4.2 Documentation

This section does not apply to the statically typed languages like Java and C#, where overloading of the types is handled much like C++ by generating overloaded methods in the target
language. In many of the other target languages, SWIG still fully supports C++ overloaded methods and functions. For example, if you have a collection of functions like this:

int foo(int x);
int foo(double x);
int foo(char *s, int y);

You can access the functions in a normal way from the scripting interpreter:

Python
foo(3) # foo(int)
foo(3.5) # foo(double)

foo("hello", 5) # foo(char *, int)

Tcl

foo 3 # foo(int)

foo 3.5 # foo(double)

foo hello 5 # foo(char *, int)

To

implement overloading, SWIG generates a separate wrapper function for each overloaded method. For example, the above functions would produce something roughly like this:

// wrapper pseudocode
_wrap_foo_0(argc, args[]) { // foo(int)
int argl;
int result;
argl = FromInteger(args[0]);
result = foo(argl);
return ToInteger(result);

}

_wrap_foo_l(argc, args[]) { // foo(double)
double argl;
int result;
argl = FromDouble(args[0]);
result = foo(argl);
return ToInteger(result);

}

_wrap_foo_2(argc, args[]) { // foo(char *, int)

char *argl;

int arg2;

int result;

argl = FromString(args[0]);

arg2 = FromInteger(args[l]);

result = foo(argl, arg2);

return TolInteger(result);

Next, a dynamic dispatch function is generated:

_wrap_foo(argc, args[]) {
if (argc == 1) {
if (IsInteger(args[0])) {
return _wrap foo 0(argc, args);
}
if (IsDouble(args[0])) {
return _wrap foo_l(argc, args);
}
}
if (argc == 2) {
if (IsString(args[0]) && IsInteger(args[1l])) {
return _wrap_foo_Z(argc, args);
}
}
error("No matching function!\n");

}

The purpose of the dynamic dispatch function is to select the appropriate C++ function based on argument types---a task that must be performed at runtime in most of SWIG's target
languages.

The generation of the dynamic dispatch function is a relatively tricky affair. Not only must input typemaps be taken into account (these typemaps can radically change the types of arguments
accepted), but overloaded methods must also be sorted and checked in a very specific order to resolve potential ambiguity. A high-level overview of this ranking process is found in the "SWIG
and C++ " chapter. What isn't mentioned in that chapter is the mechanism by which it is implemented---as a collection of typemaps.

To support dynamic dispatch, SWIG first defines a general purpose type hierarchy as follows:

Symbolic Name Precedence Value
SWIG_TYPECHECK_POINTER 0
SWIG_TYPECHECK_I TERATOR 5
SWIG_TYPECHECK VOIDPTR 10
SWIG_TYPECHECK_BOOL 15
SWIG_TYPECHECK_UINTS 20
SWIG_TYPECHECK_ INTS8 25,
SWIG_TYPECHECK_UINT16 30
SWIG_TYPECHECK_INTIG 95
SWIG_TYPECHECK_UINT32 40
SWIG_TYPECHECK_INT32 45
SWIG_TYPECHECK_SIZE 47
SWIG_TYPECHECK PTRDIFF 48

14.13 Typemaps and overloading

SWIG-4.2 Documentation

SWIG_TYPECHECK_UINT64 50

SWIG_TYPECHECK_INT64 55

SWIG_TYPECHECK UINT128 60

SWIG_TYPECHECK_INT128 65

SWIG_TYPECHECK_INTEGER 70

SWIG_TYPECHECK_FLOAT 80

SWIG_TYPECHECK_DOUBLE 90

SWIG_TYPECHECK_CPLXFLT 95

SWIG_TYPECHECK_CPLXDBL 100
SWIG_TYPECHECK_COMPLEX 105
SWIG_TYPECHECK_UNICHAR 110
SWIG_TYPECHECK_STDUNISTRING 115
SWIG_TYPECHECK_UNISTRING 120
SWIG_TYPECHECK_CHAR 130
SWIG_TYPECHECK_STDSTRING 135
SWIG_TYPECHECK_STRING 140
SWIG_TYPECHECK_PAIR 150
SWIG_TYPECHECK_STDARRAY 155
SWIG_TYPECHECK_VECTOR 160
SWIG_TYPECHECK_DEQUE 170
SWIG_TYPECHECK_LIST 180
SWIG_TYPECHECK_SET 190
SWIG_TYPECHECK_MULTISET 200
SWIG_TYPECHECK_MAP 210
SWIG_TYPECHECK_MULTIMAP 220
SWIG_TYPECHECK_STACK 230
SWIG_TYPECHECK_QUEUE 240
SWIG_TYPECHECK_BOOL ARRAY 1015
SWIG_TYPECHECK_INT8_ARRAY 1025
SWIG_TYPECHECK_INT16_ARRAY 1035
SWIG_TYPECHECK_INT32_ARRAY 1045
SWIG_TYPECHECK_INT64_ARRAY 1055
SWIG_TYPECHECK_INT128_ARRAY 1065
SWIG_TYPECHECK_FLOAT ARRAY 1080
SWIG_TYPECHECK_DOUBLE_ARRAY 1090
SWIG_TYPECHECK_CHAR ARRAY 1130
SWIG_TYPECHECK_STRING_ARRAY 1140
SWIG_TYPECHECK_OBJECT_ARRAY 1150
SWIG_TYPECHECK_BOOL_PTR 2015
SWIG_TYPECHECK_UINT8_PTR 2020
SWIG_TYPECHECK_INT8_PTR 2025
SWIG_TYPECHECK_UINT16_PTR 2030
SWIG_TYPECHECK_INT16_PTR 2035
SWIG_TYPECHECK_UINT32_PTR 2040
SWIG_TYPECHECK_INT32_PTR 2045
SWIG_TYPECHECK_UINT64_PTR 2050
SWIG_TYPECHECK_INT64_PTR 2055
SWIG_TYPECHECK FLOAT PTR 2080
SWIG_TYPECHECK_DOUBLE_PTR 2090
SWIG_TYPECHECK_CHAR_PTR 2130
SWIG_TYPECHECK_SWIGOBJECT 5000

(These precedence levels are defined in swig.swg, a library file that's included by all target language modules.)

In this table, the precedence-level determines the order in which types are going to be checked. Low values are always checked before higher values. For example, integers are checked

before floats, single values are checked before arrays, and so forth.

Using the above table as a guide, each target language defines a collection of "typecheck" typemaps. The following excerpt from the Python module illustrates this:

/* Python type checking rules */
/* Note: %typecheck(X) is a macro for %$typemap(typecheck, precedence=X) */

$typecheck (SWIG_TYPECHECK_INTEGER)
int, short, long,
unsigned int, unsigned short, unsigned long,
signed char, unsigned char,
long long, unsigned long long,
const int &, const short &, const long &,
const unsigned int &, const unsigned short &, const unsigned long &,
const long long &, const unsigned long long &,
enum SWIGTYPE,
bool, const bool &
{
$1 = (PyInt_Check($input) || PyLong_Check($input)) 2 1 : 0;
}

3typecheck (SWIG_TYPECHECK DOUBLE)
float, double,
const float &, const double &

{
$1 = (PyFloat Check($input) || PyInt_Check($input) || PyLong_Check($input)) 2 1 : 0;

}

%typecheck (SWIG_TYPECHECK_CHAR) char {
$1 = (PyString_Check($input) && (PyString_Size($input) == 1)) 2 1 : 0;
}

$typecheck (SWIG_TYPECHECK_STRING) char * {
$1 = PyString_Check($input) ? 1 : 0;
}

%$typemap (typecheck, precedence=SWIG_TYPECHECK_ POINTER, noblock=1) SWIGTYPE * {
void *vptr = 0;
int res = SWIG_ConvertPtr($input, &vptr, $1_descriptor, 0);
$1 = SWIG_IsOK(res) ? 1 : 0;

}

$typecheck (SWIG_TYPECHECK_POINTER) PyObject * {
$1 = ($input != 0);
}

14.13 Typemaps and overloading

155

SWIG-4.2 Documentation

It might take a bit of contemplation, but this code has merely organized all of the basic C++ types, provided some simple type-checking code, and assigned each type a precedence value.
Finally, to generate the dynamic dispatch function, SWIG uses the following algorithm:

« Overloaded methods are first sorted by the number of required arguments.
« Methods with the same number of arguments are then sorted by precedence values of argument types.
« Typecheck typemaps are then emitted to produce a dispatch function that checks arguments in the correct order.

If you haven't written any typemaps of your own, it is unnecessary to worry about the typechecking rules. However, if you have written new input typemaps, you might have to supply a
typechecking rule as well. An easy way to do this is to simply copy one of the existing typechecking rules. Here is an example,

// Typemap for a C++ string
%typemap(in) std::string {
if (PyString_Check($input)) {
$1 = std::string(PyString AsString($input));
} else {
SWIG_exception(SWIG_TypeError, "string expected");
}

// Copy the typecheck code for "char *".
%typemap (typecheck) std::string = char *;

The bottom line: If you are writing new typemaps and you are using overloaded methods, you will probably have to write new typecheck code or copy and modify existing typecheck code.

If you write a typecheck typemap and omit the precedence level, for example commenting it out as shown below:

$typemap (typecheck /*, precedence=SWIG_TYPECHECK_INTEGER*/) int {
$1 = PyInt_Check($input) ? 1 : 0;
}

then the type is given a precedence higher than any other known precedence level and a warning is issued:

example.i:18: Warning 467: Overloaded method foo(int) not supported (incomplete type
checking rule - no precedence level in typecheck typemap for 'int').

Notes:

Typecheck typemaps are not used for non-overloaded methods. Because of this, it is still always necessary to check types in any "in" typemaps.

The dynamic dispatch process is only meant to be a heuristic. There are many corner cases where SWIG simply can't disambiguate types to the same degree as C++. The only way to
resolve this ambiguity is to use the %rename directive to rename one of the overloaded methods (effectively eliminating overloading).

Typechecking may be partial. For example, if working with arrays, the typecheck code might simply check the type of the first array element and use that to dispatch to the correct
function. Subsequent "in" typemaps would then perform more extensive type-checking.

Make sure you read the section onoverloading in the SWIG and C++ chapter.

14.13.1 SWIG_TYPECHECK_POINTER precedence level and the typecheck typemap

When it comes to overloading of a particular type passed by value, pointer or reference (const and non-const), a C++ compiler can disambiguate which overloaded function to call. However,
SWIG effectively treats these as pointers in the target language and thus as equivalent types. For example, consider:

class X { ... };

void m(X const &c); // equivalent: void m(X *c);
void m(X &r); // equivalent: void m(X *r);
void m(X *p); // equivalent: void m(X *p);

These cannot be disambiguated in the target languages and so SWIG will choose the first method and ignore the subsequent two methods. The scripting languages do this by using the
overload dispatch mechanism described earlier and warnings indicate this:

example.i:6: Warning 509: Overloaded method m(X &) effectively ignored,
example.i:5: Warning 509: as it is shadowed by m(X const &).
example.i:7: Warning 509: Overloaded method m(X *) effectively ignored,
example.i:5: Warning 509: as it is shadowed by m(X const &).

Th

9]

statically typed languages like Java and C# automatically ignore all but the first equivalent overloaded methods with warnings:

example.i:6: Warning 516: Overloaded method m(X &) ignored,
example.i:5: Warning 516: using m(X const &) instead.
example.i:7: Warning 516: Overloaded method m(X *) ignored,
example.i:5: Warning 516: using m(X const &) instead.

You can select the overloaded method you would like to wrap by ignoring the other two with $ignore or rename two of them with $rename and this will of course remove the warnings too.
The problem of ambiguity is also discussed in the C++ chapter on overloading.

So how does this work with respect to typemaps? The typemaps SWIG provides to handle overloading for these three methods are from the SWIGTYPE family. As discussed earlier, in Default
typemap matching rules, the SWIGTYPE & typemaps are used for references and SWIGTYPE * typemaps are used for pointers. SWIG uses the special SWIG_TYPECHECK_POINTER (0)
precedence level to handle these types in the "typecheck" typemap:

%$typemap (typecheck, precedence=SWIG_TYPECHECK POINTER) SWIGTYPE & "..."
%typemap (typecheck, precedence=SWIG_TYPECHECK POINTER) SWIGTYPE * "...

When the SWIGTYPE "typecheck" typemaps use the SWIG_TYPECHECK POINTER precedence level, SWIG converts the type to a pointer equivalent type and then uses the equivalent type
to detect if it can be disambiguated in an overloaded method in the target language. In our example above, the equivalent types for X const & ,X & andX * are allXx *. As they are the
same, they cannot be disambiguated and so just the first overloaded method is chosen.

The automatic conversion to equivalent types and subsequent type comparison is triggered via the use of the special SWIG_TYPECHECK POINTER precedence level and works for types
passed by value, pointer and reference. Alas, there are more ways to overload a method that also need handling. C++ smart pointers are such a type which can be disambiguated by a C++
compiler but not automatically by SWIG. SWIG does not automatically know that a smart pointer has an equivalent type, but it can be told manually. Just specify the 'equivalent' attribute in the
"typecheck" typemap with a pointer to the underlying type.

$typemap (typecheck, precedence=SWIG_TYPECHECK POINTER, equivalent="X *") MySmartPtr<x> " ... "

14.13 Typemaps and overloading

156

SWIG-4.2 Documentation

void m(X &r); // equivalent: void m(X *r);
void m(MySmartPtr<X> s); // equivalent: void m(X *s);

Now SWIG will detect the two types are equivalent and generate valid code by wrapping just the first overloaded method. You can of course choose which method to wrap by ignoring one of

them with $ignore . Otherwise both can be wrapped by removing the overloading name ambiguity by renaming one of them with $rename.

The 'equivalent' attribute is used in the implementation for the shared_ptr smart pointer library.

14.14 More about %apply and %clear

In order to implement certain kinds of program behavior, it is sometimes necessary to write a family of typemap methods. For example, to support output arguments, one often writes a family of

typemaps like this:

%typemap(in, numinputs=0) int *OUTPUT (int temp) {
$1 = &temp;

}

%typemap(argout) int *OQUTPUT {
// return value somehow

}

To make it easier to apply the typemap to different argument types and names, the $apply directive performs a copy of all typemaps from a source type to one or more set of target types.

example, if you specify this,

%apply int *OUTPUT { int *retvalue, int32 *output };

then all of the int *OUTPUT (source) typemap methods are copied to int *retvalue and int32 *output (the targets).

For

However, there is a subtle aspect of $apply that needs clarification. Namely, if a target contains a typemap method that the source does not, the target typemap method remains in place and

unchanged. This behavior allows you to do two things:

« You can specialize parts of a complex typemap rule by first defining a few typemaps and then using $apply to incorporate the remaining pieces.
« Different typemaps can be applied to the same datatype using repeated $apply directives.

For example:

%typemap(in) int *INPUT (int temp) {
temp = ... get value from $input ...;
$1 = &temp;

}

%typemap(check) int *POSITIVE {
if (*$1 <= 0) {
SWIG_exception(SWIG_ValueError, "Expected a positive number!\n");
return NULL;

}
}
%typemap(arginit) int *invalue %{
$1 = NULL;
%}
%apply int *INPUT { int *invalue };

%apply int *POSITIVE { int *invalue };

In this example, neither of the two $apply directives will overwrite / delete the "arginit" typemap as neither has an "arginit" typemap. The result is a family of three relevant typemaps for int

*invalue. Since $apply does not overwrite / delete any existing rules, the only way to reset behavior is to delete them, such as with the $clear directive. For example:

%clear int *invalue;

will delete the typemaps for all the typemap methods; namely "in", "check" and "arginit". Alternatively delete each one individually:

%typemap(in) int *invalue;
%typemap(check) int *invalue;
%typemap(arginit) int *invalue;

14.15 Passing data between typemaps

It is also important to note that the primary use of local variables is to create stack-allocated objects for temporary use inside a wrapper function (this is faster and less-prone to error than

allocating data on the heap). In general, the variables are not intended to pass information between different types of typemaps. However, this can be done if you realize that local names have

the argument number appended to them. For example, you could do this:

%typemap(in) int *(int temp) {
temp = (int) PyInt_AsLong($input);
$1 = &temp;

}

%typemap(argout) int * {
PyObject *o = PyInt_ FromLong(temp$argnum);

In this case, the $argnum variable is expanded into the argument number. Therefore, the code will reference the appropriate local such as temp1 and temp2. It should be noted that there are

plenty of opportunities to break the universe here and that accessing locals in this manner should probably be avoided. At the very least, you should make sure that the typemaps sharing

information have exactly the same types and names.

14.16 C++ "this" pointer

14.14 More about %apply and %clear

157

SWIG-4.2 Documentation

All the rules discussed for typemaps apply to C++ as well as C. However in addition C++ passes an extra parameter into every non-static class method -- the this pointer. Occasionally it can
be useful to apply a typemap to this pointer (for example to check and make sure this is non-null before deferencing). Actually, C also has an the equivalent of the this pointer which is used
when accessing variables in a C struct.

In order to customise the this pointer handling, target a variable named self in your typemaps. self is the name SWIG uses to refer to the extra parameter in wrapped functions.

For example, if wrapping for Java generation:

%typemap(check) SWIGTYPE *self %{
if (181) {
SWIG_JavaThrowException(jenv, SWIG_JavaNullPointerException,
"invalid native object; delete() likely already called");
return $null;
}
%}

In the above case, the $1 variable is expanded into the argument name that SWIG is using as the this pointer. SWIG will then insert the check code before the actual C++ class method is
called, and will raise an exception rather than crash the Java virtual machine. The generated code will look something like:

if (largl) {
SWIG_JavaThrowException(jenv, SWIG_JavaNullPointerException,
"invalid native object; delete() likely already called");
return ;
}

(argl)->wrappedFunction(...);

Note that if you have a parameter named self£ then it will also match the typemap. One work around is to create an interface file that wraps the method, but gives the argument a name other
than self.

14.17 Where to go for more information?

The best place to find out more information about writing typemaps is to look in the SWIG library. Most language modules define all of their default behavior using typemaps. These are found
in files such as python. swg, perl5.swg, tcl8.swg and so forth. The typemaps. i file in the library also contains numerous examples. You should look at these files to get a feel for how to
define typemaps of your own. Some of the language modules support additional typemaps and further information is available in the individual chapters for each target language. There you
may also find more hands-on practical examples.

15 Customization Features

« Exception handling with %exception
Handling exceptions in C code
Exception handling with longjmp
Handling C++ exceptions
Exception handlers for variables
Defining different exception handlers
Special variables for %exception
Using The SWIG exception library
« Object ownership and %newobject
« Features and the %feature directive

o Feature attributes

o Feature flags

o Clearing features

o Features and default arguments

o Feature example

°

o

°

°

o

°

°

In many cases, it is desirable to change the default wrapping of particular declarations in an interface. For example, you might want to provide hooks for catching C++ exceptions, add
assertions, or provide hints to the underlying code generator. This chapter describes some of these customization techniques. First, a discussion of exception handling is presented. Then, a
more general-purpose customization mechanism known as "features” is described.

15.1 Exception handling with %exception

The %exception directive allows you to define a general purpose exception handler. For example, you can specify the following:

%exception {
try {
Saction
}
catch (RangeError) {
. handle error ...
}
}

How the exception is handled depends on the target language, for example, Python:

%exception {
try {
$action
}
catch (RangeError) {
PyErr_SetString(PyExc_IndexError, "index out-of-bounds");
SWIG_fail;
}
}

When defined, the code enclosed in braces is inserted directly into the low-level wrapper functions. The special variable $action is one of a few %exception special variables supported and
gets replaced with the actual operation to be performed (a function call, method invocation, attribute access, etc.). An exception handler remains in effect until it is explicitly deleted. This is
done by using either $exception or $noexception with no code. For example:

%exception; // Deletes any previously defined handler

14.17 Where to go for more information?

158

SWIG-4.2 Documentation

15.1.1 Handling exceptions in C code

C has no formal exception handling mechanism so there are several approaches that might be used. A somewhat common technique is to simply set a special error code. For example:

/* File : except.c */

static char error_message[256];
static int error_status = 0;

void throw_exception(char *msg) {
strncpy(error_message, msg, 256);
error_status = 1;

}

void clear_exception() {
error_status = 0;
}
char *check_exception() {
if (error_status)
return error_message;
else
return NULL;

To use these functions, functions simply call throw_exception() to indicate an error occurred. For example :

double inv(double x) {
if (x 1= 0)
return 1.0/x;
else {
throw_exception("Division by zero");
return 0;

To catch the exception, you can write a simple exception handler such as the following (shown for Perl5) :

%exception {
char *err;
clear_exception();
Saction
if ((err = check_exception())) {
croak(err);

}

In this case, when an error occurs, it is translated into a Perl error. Each target language has its own approach to creating a runtime error/exception in and for Perl it is the croak method
shown above.

15.1.2 Exception handling with longjmp()

Exception handling can also be added to C code using the <setjmp.h> library. Here is a minimalistic implementation that relies on the C preprocessor :

/* File : except.c
Just the declaration of a few global variables we're going to use */

#include <setjmp.h>
jmp_buf exception_buffer;
int exception_status;

/* File : except.h */

#include <setjmp.h>

extern jmp_buf exception_buffer;
extern int exception_status;

#define try if ((exception_status = setjmp(exception buffer)) == 0)
#define catch(val) else if (exception_status == val)

#define throw(val) longjmp(exception_buffer, val)

#define finally else

/* Exception codes */

#define RangeError 1
#define DivisionByZero 2
#define OutOfMemory 3

Now, within a C program, you can do the following :

double inv(double x) {
if (%)
return 1.0/x;
else
throw(DivisionByZero);

Finally, to create a SWIG exception handler, write the following :

3{

14.17 Where to go for more information?

SWIG-4.2 Documentation

#include "except.h"

%}

%exception {

try {
Saction
catch(RangeError) {
croak("Range Error");
catch(DivisionByZero) {
croak("Division by zero");
catch(OutOfMemory) {
croak("Out of memory");
finally {
croak("Unknown exception");

-~

-~

-~

-~

Note: This implementation is only intended to illustrate the general idea. To make it work better, you'll need to modify it to handle nested try declarations.
15.1.3 Handling C++ exceptions

Handling C++ exceptions is also straightforward. For example:

%exception {

try {
$action
catch(RangeError) {
croak("Range Error");
catch(DivisionByZero) {
croak("Division by zero");
catch(OutOfMemory) {
croak("Out of memory");
catch(...) {
croak("Unknown exception");

v v

The exception types need to be declared as classes elsewhere, possibly in a header file :

class RangeError {};
class DivisionByZero {};
class OutOfMemory {};

15.1.4 Exception handlers for variables

By default all variables will ignore $exception, so it is effectively turned off for all variables wrappers. This applies to global variables, member variables and static member variables. The
approach is certainly a logical one when wrapping variables in C. However, in C++, it is quite possible for an exception to be thrown while the variable is being assigned. To ensure
$exception is used when wrapping variables, it needs to be 'turned on' using the $allowexception feature. Note that $allowexception is just a macro for
sfeature("allowexcept"), thatis, it is a feature called "allowexcept". Any variable which has this feature attached to it, will then use the $exception feature, but of course, only if there
is a $exception attached to the variable in the first place. The $allowexception feature works like any other feature and so can be used globally or for selective variables.

%allowexception; // turn on globally
%allowexception Klass::MyVar; // turn on for a specific variable

%noallowexception Klass::MyVar; // turn off for a specific variable
%noallowexception; // turn off globally

15.1.5 Defining different exception handlers

By default, the 2exception directive creates an exception handler that is used for all wrapper functions that follow it. Unless there is a well-defined (and simple) error handling mechanism in
place, defining one universal exception handler may be unwieldy and result in excessive code bloat since the handler is inlined into each wrapper function.

To fix this, you can be more selective about how you use the $exception directive. One approach is to only place it around critical pieces of code. For example:

%exception {
... your exception handler ...
}

/* Define critical operations that can throw exceptions here */
%exception;

/* Define non-critical operations that don't throw exceptions */

More precise control over exception handling can be obtained by attaching an exception handler to specific declaration name. For example:

%exception allocate {
try {
Saction
}
catch (MemoryError) {
croak("Out of memory");

}

In this case, the exception handler is only attached to declarations named "allocate". This would include both global and member functions. The names supplied to $exception follow the

same rules as for $rename described in the section onRenaming and ambiguity resolution. For example, if you wanted to define an exception handler for a specific class, you might write this:

%exception Object::allocate {
try {
$action

14.17 Where to go for more information?

@

160

SWIG-4.2 Documentation

}
catch (MemoryError) {
croak("Out of memory");

}

When a class prefix is supplied, the exception handler is applied to the corresponding declaration in the specified class as well as for identically named functions appearing in derived classes.

%exception can even be used to pinpoint a precise declaration when overloading is used. For example:

%exception Object::allocate(int) {
try {
saction
}
catch (MemoryError) {
croak("Out of memory");

}

Attaching exceptions to specific declarations is a good way to reduce code bloat. It can also be a useful way to attach exceptions to specific parts of a header file. For example:

%module example

3{

#include "someheader.h"
%}

// Define a few exception handlers for specific declarations
%exception Object::allocate(int) {
try {
$action
}
catch (MemoryError) {
croak("Out of memory");
}
}

%exception Object::getitem {
try {
$action
}
catch (RangeError) {
croak("Index out of range");
}
}
// Read a raw header file
%include "someheader.h"

15.1.6 Special variables for %exception

The %exception directive supports a few special variables which are placeholders for code substitution. The following table shows the available special variables and details what the special
variables are replaced with.

$action The actual operation to be performed (a function call, method invocation, variable access, etc.)

$name The C/C++ symbol name for the function.

$symname The symbol name used internally by SWIG

$overname The extra mangling used in the symbol name for overloaded method. Expands to nothing if the wrapped method is not
overloaded.

$wrapname The language specific wrapper name (usually a C function name exported from the shared object/dll)

$decl The fully qualified C/C++ declaration of the method being wrapped without the return type

S$fulldecl The fully qualified C/C++ declaration of the method being wrapped including the return type

$parentclassname The parent class name (if any) for a method.
$parentclasssymname The target language parent class name (if any) for a method.

The special variables are often used in situations where method calls are logged. Exactly which form of the method call needs logging is up to individual requirements, but the example code
below shows all the possible expansions, plus how an exception message could be tailored to show the C++ method declaration:

%exception Special::something {
log("symname: $symname");
log("overname: $overname");
log("wrapname: $wrapname");
log("decl: $decl");
log("fulldecl: $fulldecl");
try {

Saction
}
catch (MemoryError) {

croak("Out of memory in $decl");
}

}

void log(const char *message);

struct Special {
void something(const char *c);
void something(int i);

}i

Below shows the expansions for the 1st of the overloaded something wrapper methods for Perl:

log("symname: Special_ something");

log("overname: _ SWIG 0");

log("wrapname: _wrap_Special_ something_ SWIG 0");
log("decl: Special::something(char const *)");
log("fulldecl: void Special::something(char const *)");

14.17 Where to go for more information?

SWIG-4.2 Documentation

try {
(argl)->something((char const *)arg2);
}
catch (MemoryError) {
croak("Out of memory in Special::something(char const *)");

}

15.1.7 Using The SWIG exception library

The exception. i library file provides support for creating language independent exceptions in your interfaces. To use it, simply put an "$include exception.i"in your interface file. This
provides a function SWIG_exception() that can be used to raise common scripting language exceptions in a portable manner. For example :

// Language independent exception handler
%include exception.i

%exception {

try {
Saction
catch(RangeError) {
SWIG_exception(SWIG_ValueError, "Range Error");
catch(DivisionByZero) {
SWIG_exception(SWIG_DivisionByZero, "Division by zero");
catch(OutOfMemory) {
SWIG_exception(SWIG_MemoryError, "Out of memory");
catch(...) {
SWIG_exception(SWIG_RuntimeError, "Unknown exception");

C Y v

As arguments, SWIG_exception() takes an error type code (an integer) and an error message string. The currently supported error types are :

SWIG_UnknownError
SWIG_IOError
SWIG_RuntimeError
SWIG_IndexError
SWIG_TypeError
SWIG_DivisionByZero
SWIG_OverflowError
SWIG_SyntaxError
SWIG_ValueError
SWIG_SystemError
SWIG_AttributeError
SWIG_MemoryError
SWIG_NullReferenceError

The SWIG_exception() function can also be used in typemaps.
15.2 Object ownership and %newobject

A common problem in some applications is managing proper ownership of objects. For example, consider a function like this:

Foo *blah() {
Foo *f = new Foo();
return f;

If you wrap the function blah (), SWIG has no idea that the return value is a newly allocated object. As a result, the resulting extension module may produce a memory leak (SWIG is
conservative and will never delete objects unless it knows for certain that the returned object was newly created).

To fix this, you can provide an extra hint to the code generator using the $newobject directive. For example:

%newobject blah;
Foo *blah();

$newobject works exactly like rename and $exception. In other words, you can attach it to class members and parameterized declarations as before. For example:

%newobject ::blah(); // Only applies to global blah
%newobject Object::blah(int, double); // Only blah(int, double) in Object
%newobject *::copy; // Copy method in all classes

When %newobject is supplied, many language modules will arrange to take ownership of the return value. This allows the value to be automatically garbage-collected when it is no longer in
use. However, this depends entirely on the target language (a language module may also choose to ignore the $newobject directive).

Closely related to $newobject is a special typemap. The "newfree" typemap can be used to deallocate a newly allocated return value. It is only available on methods for which $newobject
has been applied and is commonly used to clean-up string results. For example:

%typemap (newfree) char * "free($1l);"
%newobject strdup;

char *strdup(const char *s);

In this case, the result of the function is a string in the target language. Since this string is a copy of the original result, the data returned by strdup () is no longer needed. The "newfree"
typemap in the example simply releases this memory.

As a complement to the $newobject, from SWIG 1.3.28, you can use the $delobject directive. For example, if you have two methods, one to create objects and one to destroy them, you
can use:

15.2 Object ownership and %newobject 162

SWIG-4.2 Documentation

$newobject create_ foo;
$delobject destroy_foo;

Foo *create_foo();

void destroy_foo(Foo *foo);

or in a member method as:

%delobject Foo::destroy;

class Foo {
public:
void destroy() { delete this;}

private:
~Foo();
Yi

$delobject instructs SWIG that the first argument passed to the method will be destroyed, and therefore, the target language should not attempt to deallocate it twice. This is similar to use
the DISOWN typemap in the first method argument, and in fact, it also depends on the target language on implementing the 'disown’ mechanism properly.

The use of $newobject is also integrated with reference counting and is covered in the C++ reference counted objects section.
15.3 Features and the %feature directive

Both gexception and $newobject are examples of a more general purpose customization mechanism known as "features." A feature is simply a user-definable property that is attached to
specific declarations. Features are attached using the $feature directive. For example:

%feature("except") Object::allocate {
try {
Saction
}
catch (MemoryError) {
croak("Out of memory");
}
}

%feature("new", "1") *::copy;

In fact, the $exception and $newobject directives are really nothing more than macros involving $feature:

#define %exception %feature("except")
#define %newobject %feature("new", "1")

The name matching rules outlined in the Renaming and ambiguity resolution section applies to all ¢ feature directives. In fact the $rename directive is just a special form of ¢ feature. The
matching rules mean that features are very flexible and can be applied with pinpoint accuracy to specific declarations if needed. Additionally, if no declaration name is given, a global feature is

said to be defined. This feature is then attached to every declaration that follows. This is how global exception handlers are defined. For example:

/* Define a global exception handler */
%feature("except") {
try {
Saction
}

}

... bunch of declarations ...

The $feature directive can be used with different syntax. The following are all equivalent:

%feature("except") Object::method { $action };
%feature("except") Object::method %{ $action %};
%feature("except") Object::method " $action ";
%feature("except", "$action") Object::method;

The syntax in the first variation will generate the { } delimiters used whereas the other variations will not.
15.3.1 Feature attributes

The $feature directive also accepts XML style attributes in the same way that typemaps do. Any number of attributes can be specified. The following is the generic syntax for features:

%feature("name", "value", attributel="AttributeValuel") symbol;
%feature("name", attributel="AttributeValuel") symbol {value};
%feature("name", attributel="AttributeValuel") symbol %{value%};
%feature("name", attributel="AttributevValuel") symbol "value";

More than one attribute can be specified using a comma separated list. The Java module is an example that uses attributes in $feature ("except"). The throws attribute specifies the
name of a Java class to add to a proxy method's throws clause. In the following example, MyExceptionClass is the name of the Java class for adding to the throws clause.

%feature("except", throws="MyExceptionClass") Object::method {
try {
Saction
} catch (...) {
... code to throw a MyExceptionClass Java exception ...
}
}i

15.3 Features and the %feature directive

SWIG-4.2 Documentation

Further details can be obtained from the Java exception handling section.
15.3.2 Feature flags

Feature flags are used to enable or disable a particular feature. Feature flags are a common but simple usage of $feature and the feature value should be either 1 to enable or 0 to disable
the feature.

%feature("featurename") // enables feature
%feature("featurename", "1") // enables feature
%feature("featurename", "x") // enables feature
%feature("featurename", "0") // disables feature
%feature("featurename", "") // clears feature

Actually any value other than zero will enable the feature. Note that if the value is omitted completely, the default value becomes 1, thereby enabling the feature. A feature is cleared by
specifying no value, see Clearing features. The $immutable directive described in the Creating read-only variables section, is just a macro for ¢ feature ("immutable"), and can be used
to demonstrates feature flags:

// features are disabled by default
int red; // mutable
%feature("immutable"); // global enable
int orange; // immutable
%feature("immutable", "0"); // global disable
int yellow; // mutable
%feature("immutable", "1"); // another form of global enable
int green; // immutable
%feature("immutable", ""); // clears the global feature
int blue; // mutable

Note that features are disabled by default and must be explicitly enabled either globally or by specifying a targeted declaration. The above intersperses SWIG directives with C code. Of course
you can target features explicitly, so the above could also be rewritten as:

%feature("immutable", "1") orange;
%feature("immutable", "1") green;

int red; // mutable
int orange; // immutable
int yellow; // mutable
int green; // immutable
int blue; // mutable

The above approach allows for the C declarations to be separated from the SWIG directives for when the C declarations are parsed from a C header file. The logic above can of course be
inverted and rewritten as:

%feature("immutable", "1");
%feature("immutable", "0") red;
%feature("immutable", "0") yellow;
%feature("immutable", "0") blue;

int red; // mutable
int orange; // immutable
int yellow; // mutable
int green; // immutable
int blue; // mutable

As hinted above for $immutable, most feature flags can also be specified via alternative syntax. The alternative syntax is just a macro in the swig. swg Library file. The following shows the
alternative syntax for the imaginary featurename feature:

%featurename // equivalent to %feature("featurename", "1") ie enables feature
%nofeaturename // equivalent to %feature("featurename", "0") ie disables feature
%clearfeaturename // equivalent to %feature("featurename", "") ie clears feature

The concept of clearing features is discussed next.
15.3.3 Clearing features
A feature stays in effect until it is explicitly cleared. A feature is cleared by supplying a $ feature directive with no value. For example $feature("name", ""). A cleared feature means that

any feature exactly matching any previously defined feature is no longer used in the name matching rules. So if a feature is cleared, it might mean that another name matching rule will apply.
To clarify, let's consider the except feature again (3exception):

// Define global exception handler
%feature("except") {
try {
$action
} catch (...) {
croak("Unknown C++ exception");
}
}

// Define exception handler for all clone methods to log the method calls
%feature("except") *::clone() {
try {
logger.info("$action");
s$action
} catch (...) {
croak("Unknown C++ exception");

}

... initial set of class declarations with clone methods ...

15.3 Features and the %feature directive

SWIG-4.2 Documentation

// clear the previously defined feature
%feature("except", "") *::clone();

. final set of class declarations with clone methods ...

In the above scenario, the initial set of clone methods will log all method invocations from the target language. This specific feature is cleared for the final set of clone methods. However, these
clone methods will still have an exception handler (without logging) as the next best feature match for them is the global exception handler.

Note that clearing a feature is not always the same as disabling it. Clearing the feature above with $feature("except", "") *::clone() is not the same as specifying
$feature("except", "0") *::clone() . The former will disable the feature for clone methods - the feature is still a better match than the global feature. If on the other hand, no global
exception handler had been defined at all, then clearing the feature would be the same as disabling it as no other feature would have matched.

Note that the feature must match exactly for it to be cleared by any previously defined feature. For example the following attempt to clear the initial feature will not work:

%feature("except") clone() { logger.info("$action"); S$action }
%feature("except", "") *::clone();
but this will:

%feature("except") clone() { logger.info("S$action"); S$Saction }
%feature("except", "") clone();

SWIG provides macros for disabling and clearing features. Many of these can be found in the swig. swg library file. The typical pattern is to define three macros; one to define the feature
itself, one to disable the feature and one to clear the feature. The three macros below show this for the "except" feature:

#define %exception %feature("except")
#define %noexception %feature("except", "0")
#define %clearexception %feature("except", "")

15.3.4 Features and default arguments

SWIG treats methods with default arguments as separate overloaded methods as detailed in the default arguments section. Any $feature targeting a method with default arguments will
apply to all the extra overloaded methods that SWIG generates if the default arguments are specified in the feature. If the default arguments are not specified in the feature, then the feature
will match that exact wrapper method only and not the extra overloaded methods that SWIG generates. For example:

%feature("except") hello(int i=0, double d=0.0) { ... }
void hello(int i=0, double d=0.0);

will apply the feature to all three wrapper methods, that is:

void hello(int i, double d);
void hello(int 1i);
void hello();

If the default arguments are not specified in the feature:

%feature("except") hello(int i, double d) { ... }
void hello(int i=0, double d=0.0);

then the feature will only apply to this wrapper method:

void hello(int i, double d);

and not these wrapper methods:

void hello(int i);
void hello();

If compactdefaultargs are being used, then the difference between specifying or not specifying default arguments in a feature is not applicable as just one wrapper is generated.

Compatibility note: The different behaviour of features specified with or without default arguments was introduced in SWIG-1.3.23 when the approach to wrapping methods with default
arguments was changed.

15.3.5 Feature example

As has been shown earlier, the intended use for the $feature directive is as a highly flexible customization mechanism that can be used to annotate declarations with additional information
for use by specific target language modules. Another example is in the Python module. You might use $feature to rewrite proxy/shadow class code as follows:

gmodule example
$rename(bar_id) bar(int, double);

// Rewrite bar() to allow some nice overloading

%feature("shadow") Foo::bar(int) %{
def bar(*args):
if len(args) == 3:
return apply(examplec.Foo_bar_id, args)
return apply(examplec.Foo_bar, args)
%)

class Foo {
public:
int bar(int x);
int bar(int x, double y);

}

15.3 Features and the %feature directive

165

SWIG-4.2 Documentation

Further details of $ feature usage is described in the documentation for specific language modules.

16 Contracts

« The %contract directive

« %contract and classes

« Constant aggregation and %aggregate_check
« Notes

A common problem that arises when wrapping C libraries is that of maintaining reliability and checking for errors. The fact of the matter is that many C programs are notorious for not providing
error checks. Not only that, when you expose the internals of an application as a library, it often becomes possible to crash it simply by providing bad inputs or using it in a way that wasn't
intended.

This chapter describes SWIG's support for software contracts. In the context of SWIG, a contract can be viewed as a runtime constraint that is attached to a declaration. For example, you can
easily attach argument checking rules, check the output values of a function and more. When one of the rules is violated by a script, a runtime exception is generated rather than having the
program continue to execute.

16.1 The %contract directive

Contracts are added to a declaration using the %contract directive. Here is a simple example:

%contract sqrt(double x) {
require:
x >= 0;
ensure:
sqrt >= 0;
}

double sqgrt(double);

In this case, a contract is being added to the sqrt () function. The $contract directive must always appear before the declaration in question. Within the contract there are two sections,
both of which are optional. The require: section specifies conditions that must hold before the function is called. Typically, this is used to check argument values. The ensure: section
specifies conditions that must hold after the function is called. This is often used to check return values or the state of the program. In both cases, the conditions that must hold must be
specified as boolean expressions.

In the above example, we're simply making sure that sqrt() returns a non-negative number (if it didn't, then it would be broken in some way).

Once a contract has been specified, it modifies the behavior of the resulting module. For example:

>>> example.sqrt(2)
1.4142135623730951
>>> example.sqrt(-2)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
RuntimeError: Contract violation: require: (argl>=0)
>>>

16.2 %contract and classes

The %contract directive can also be applied to class methods and constructors. For example:

%contract Foo::bar(int x, int y) {
require:

x > 0;
ensure:

bar > 0;

}

%contract Foo::Foo(int a) {
require:
a > 0;

}

class Foo {
public:
Foo(int);
int bar(int, int);

}i

The way in which $contract is applied is exactly the same as the $feature directive. Thus, any contract that you specified for a base class will also be attached to inherited methods. For
example:

class Spam : public Foo {
public:

int bar(int, int); // Gets contract defined for Foo::bar(int, int)
}i

In addition to this, separate contracts can be applied to both the base class and a derived class. For example:

%contract Foo::bar(int x, int) {
require:
x > 0;

}

%contract Spam::bar(int, int y) {
require:
y > 0;

16.1 The %contract directive

SWIG-4.2 Documentation

}

class Foo {
public:

int bar(int, int); // Gets Foo::bar contract.
}i

class Spam : public Foo {
public:

int bar(int, int); // Gets Foo::bar and Spam::bar contract
}i

When more than one contract is applied, the conditions specified in a "require:" section are combined together using a logical-AND operation. In other words conditions specified for the base
class and conditions specified for the derived class all must hold. In the above example, this means that both the arguments to Spam: : bar must be positive.

16.3 Constant aggregation and %aggregate_check

Consider an interface file that contains the following code:

#define UP

#define DOWN
#define RIGHT
#define LEFT

W N

void move(SomeObject *, int direction, int distance);

One thing you might want to do is impose a constraint on the direction parameter to make sure it's one of a few accepted values. To do that, SWIG provides an easy to use macro
%aggregate_check() that works like this:

saggregate_check(int, check_direction, UP, DOWN, LEFT, RIGHT);

This merely defines a utility function of the form

int check_direction(int x);

That checks the argument x to see if it is one of the values listed. This utility function can be used in contracts. For example:

%aggregate_check(int, check_direction, UP, DOWN, RIGHT, LEFT);

%contract move(SomeObject *, int direction, in) {
require:
check_direction(direction);

}

#define UP

#define DOWN
#define RIGHT
#define LEFT

B W N e

void move(SomeObject *, int direction, int distance);

Alternatively, it can be used in typemaps and other directives. For example:

%aggregate_check(int, check direction, UP, DOWN, RIGHT, LEFT);

%typemap(check) int direction {
if (!check_direction($1)) SWIG_exception(SWIG_ValueError, "Bad direction");

}

#define UP 1
#define DOWN 2
#define RIGHT 3
#define LEFT 4

void move(SomeObject *, int direction, int distance);

Regrettably, there is no automatic way to perform similar checks with enums values. Maybe in a future release.

16.4 Notes

Contract support was implemented by Songyan (Tiger) Feng and first appeared in SWIG-1.3.20.

17 Variable Length Arguments

Introduction

The Problem

Default varargs support

Argument replacement using %varargs
Varargs and typemaps

Varargs wrapping with libffi

Wrapping of va_list

C++ Issues

Discussion

(a.k.a, "The horror. The horror.")

This chapter describes the problem of wrapping functions that take a variable number of arguments. For instance, generating wrappers for the C print£ () family of functions.

16.3 Constant aggregation and %aggregate_check

SWIG-4.2 Documentation

This topic is sufficiently advanced to merit its own chapter. In fact, support for varargs is an often requested feature that was first added in SWIG-1.3.12. Most other wrapper generation tools
have wisely chosen to avoid this issue.

17.1 Introduction

Some C and C++ programs may include functions that accept a variable number of arguments. For example, most programmers are familiar with functions from the C library such as the
following:

int printf(const char *fmt, ...)
int fprintf(FILE *, const char *fmt, ...);
int sprintf(char *s, const char *fmt, ...);

Although there is probably little practical purpose in wrapping these specific C library functions in a scripting language (what would be the point?), a library may include its own set of special
functions based on a similar API. For example:

int traceprintf(const char *fmt, ...);

In this case, you may want to have some kind of access from the target language.

Before describing the SWIG implementation, it is important to discuss the common uses of varargs that you are likely to encounter in real programs. Obviously, there are the print£ () style
output functions as shown. Closely related to this would be scanf () style input functions that accept a format string and a list of pointers into which return values are placed. However, variable
length arguments are also sometimes used to write functions that accept a NULL-terminated list of pointers. A good example of this would be a function like this:

int execlp(const char *path, const char *argl, ...);

/* Example */
execlp("ls", "ls", "-1", NULL);

In addition, varargs is sometimes used to fake default arguments in older C libraries. For instance, the low level open () system call is often declared as a varargs function so that it will accept
two or three arguments:

int open(const char *path, int oflag, ...);

/* Examples */
f = open("foo", O_RDONLY);
g = open("bar", O WRONLY | O _CREAT, 0644);

Finally, to implement a varargs function, recall that you have to use the C library functions defined in <stdarg.h>. For example:

List make_list(const char *s, ...) {
va_list ap;
List X;

va_start(ap, s);
while (s) {
x.append(s);
s = va_arg(ap, const char *);
}
va_end(ap);
return x;

17.2 The Problem

Generating wrappers for a variable length argument function presents a number of special challenges. Although C provides support for implementing functions that receive variable length
arguments, there are no functions that can go in the other direction. Specifically, you can't write a function that dynamically creates a list of arguments and which invokes a varargs function on
your behalf.

Although it is possible to write functions that accept the special type va_1ist, this is something entirely different. You can't take a va_1ist structure and pass it in place of the variable length
arguments to another varargs function. It just doesn't work.

The reason this doesn't work has to do with the way that function calls get compiled. For example, suppose that your program has a function call like this:

printf("Hello %s. Your number is %d\n", name, num);

When the compiler looks at this, it knows that you are calling print£ () with exactly three arguments. Furthermore, it knows that the number of arguments as well are their types and sizes is
never going to change during program execution. Therefore, this gets turned to machine code that sets up a three-argument stack frame followed by a call to printf().

In contrast, suppose you attempted to make some kind of wrapper around printf£ () using code like this:

int wrap_printf(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);

printf(fmt, ap);

va_end(ap);
Yi

Although this code might compile, it won't do what you expect. This is because the call to print£ () is compiled as a procedure call involving only two arguments. However, clearly a two-
argument configuration of the call stack is completely wrong if your intent is to pass an arbitrary number of arguments to the real printf£ (). Needless to say, it won't work.

Unfortunately, the situation just described is exactly the problem faced by wrapper generation tools. In general, the number of passed arguments will not be known until run-time. To make
matters even worse, you won't know the types and sizes of arguments until run-time as well. Needless to say, there is no obvious way to make the C compiler generate code for a function call
involving an unknown number of arguments of unknown types.

17.1 Introduction

168

SWIG-4.2 Documentation

In theory, it is possible to write a wrapper that does the right thing. However, this involves knowing the underlying ABI for the target platform and language as well as writing special purpose
code that manually constructed the call stack before making a procedure call. Unfortunately, both of these tasks require the use of inline assembly code. Clearly, that's the kind of solution you
would much rather avoid.

With this nastiness in mind, SWIG provides a number of solutions to the varargs wrapping problem. Most of these solutions are compromises that provide limited varargs support without
having to resort to assembly language. However, SWIG can also support real varargs wrapping (with stack-frame manipulation) if you are willing to get hands dirty. Keep reading.

17.3 Default varargs support

When variable length arguments appear in an interface, the default behavior is to drop the variable argument list entirely, replacing them with a single NULL pointer. For example, if you had this
function,

void traceprintf(const char *fmt, ...);

it would be wrapped as if it had been declared as follows:

void traceprintf(const char *fmt);

When the function is called inside the wrappers, it is called as follows:

traceprintf(argl, NULL);

Arguably, this approach seems to defeat the whole point of variable length arguments. However, this actually provides enough support for many simple kinds of varargs functions to still be
useful, however it does come with a caveat. For instance, you could make function calls like this (in Python):

>>> traceprintf("Hello World")
>>> traceprintf("Hello %s. Your number is %d\n" % (name, num))
>>> traceprintf("Your result is 90%%.")

Notice how string formatting is being done in Python instead of C. The caveat is the strings passed must be safe to use in C though. For example if name was to contain a "%" it should be
double escaped in order to avoid unpredictable behaviour:

>>> traceprintf("Your result is 90%.\n") # unpredictable behaviour
>>> traceprintf("Your result is 90%%.\n") # good

Read on for further solutions.
17.4 Argument replacement using %varargs

Instead of dropping the variable length arguments, an alternative approach is to replace (. . .) with a set of suitable arguments. SWIG provides a special $varargs directive that can be used
to do this. For example,

gvarargs(int mode = 0) open;

int open(const char *path, int oflags, ...);

is equivalent to this:

int open(const char *path, int oflags, int mode = 0);

In this case, $varargs is simply providing more specific information about the extra arguments that might be passed to a function. If the arguments to a varargs function are of uniform type.
$varargs can also accept a numerical argument count as follows:

%varargs(3, char *str = NULL) execlp;

int execlp(const char *path, const char *arg, ...);

aQ

and is effectively seen as:

int execlp(const char *path, const char *arg,
char *strl = NULL,
char *str2 = NULL,
char *str3 = NULL);

This would wrap execlp () as a function that accepted up to 3 optional arguments. Depending on the application, this may be more than enough for practical purposes.

The handling of default arguments can be changed via the compactdefaultargs feature. If this feature is used, for example

%feature("compactdefaultargs") execlp;
%varargs (3, char *str = NULL) execlp;

int execlp(const char *path, const char *arg, ...);

a call from the target language which does not provide the maximum number of arguments, such as, execlp("a", "b", "c") will generate C code which includes the missing default
values, that is, execlp("a", "b", "c", NULL, NULL). Ifcompactdefaultargs is not used, then the generated code will be execlp("a", "b", "c") . The former is useful for
helping providing a sentinel to terminate the argument list. However, this is not guaranteed, for example when a user passes a non-NULL value for all the parameters. When using
compactdefaultargs it is possible to guarantee the NULL sentinel is passed through the, numinputs=0 'in' typemap attribute, naming the last parameter. For example,

%feature("compactdefaultargs") execlp;
%varargs(3, char *str = NULL) execlp;
%typemap(in, numinputs=0) char *str3 ""

17.3 Default varargs support

int execlp(const char *path, const char *arg,

SWIG-4.2 Documentation

ooo))p

Note that str3 is the name of the last argument, as we have used $varargs with 3. Nowexeclp("a", "b", "c", "d", "e") will resultin an error as one too many arguments has
been passed, as now only 2 additional 'str' arguments can be passed with the 3rd one always using the specified default NULL.

Argument replacement is most appropriate in cases where the types of the extra arguments are uniform and the maximum number of arguments are known. Argument replacement is not as
useful when working with functions that accept mixed argument types such as printf (). Providing general purpose wrappers to such functions presents special problems (covered shortly).

17.5 Varargs and typemaps

Variable length arguments may be used in typemap specifications. For example:

%typemap(in) (...) {
// Get variable length arguments (somehow)

}

%typemap(in) (const char *fmt, ...) {
// Multi-argument typemap

}

However, this immediately raises the question of what "type" is actually used to represent (. . .). For lack of a better alternative, the type of (...) is settovoid *. Since there is no way to
dynamically pass arguments to a varargs function (as previously described), the void * argument value is intended to serve as a place holder for storing some kind of information about the
extra arguments (if any). In addition, the default behavior of SWIG is to pass the void * value as an argument to the function. Therefore, you could use the pointer to hold a valid argument

value if you wanted.

To illustrate, here is a safer version of wrapping printf () in Python:

%typemap(in) (const char *fmt, ...) {

$1 = "ss";

$2 = (void *) PyString_ AsString($input);
}i

int printf(const char *fmt, ...);

/* Fix format string to %s */
/* Get string argument */

In this example, the format string is implicitly set to "%s" . This prevents a program from passing a bogus format string to the extension. Then, the passed input object is decoded and placed
in the void * argument defined for the (. . .) argument. When the actual function call is made, the underlying wrapper code will look roughly like this:

wrap_printf() {
char *argl;
void *arg2;
int result;

argl = "%s";
arg2 = (void *) PyString AsString(arg2obj);
result = printf(argl, arg2);

Notice how both arguments are passed to the function and it does what you would expect.

The next example illustrates a more advanced kind of varargs typemap. Disclaimer: this requires special support in the target language module and is not guaranteed to work with all SWIG
modules at this time. It also starts to illustrate some of the more fundamental problems with supporting varargs in more generality.

If a typemap is defined for any form of (. ..), many SWIG modules will generate wrappers that accept a variable number of arguments as input and will make these arguments available in
some form. The precise details of this depends on the language module being used (consult the appropriate chapter for more details). However, suppose that you wanted to create a Python

wrapper for the execlp () function shown earlier. To do this using a typemap instead of using $varargs, you might first write a typemap like this:

%typemap(in) (...)(char *vargs[10]) {

int ij;
Py_ssize_t argc;
for (i = 0; i < 10; i++) vargs[i] = 0;

argc = PyTuple_Size(varargs);
if (argc > 10) {
PyErr_SetString(PyExc_ValueError, "Too many arguments");
SWIG_fail;
}
for (i = 0; i < arge; i++) {
PyObject *pyobj = PyTuple_GetItem(varargs, i);
char *str = 0;
$#if PY VERSION_ HEX>=0x03000000
const char *strtmp = 0;
PyObject *pystr;
if (!PyUnicode_Check(pyobj)) {
PyErr_SetString(PyExc_ValueError, "Expected a string");
SWIG_fail;
}
pystr = PyUnicode AsUTF8String(pyobj);
if (!pystr) {
SWIG fail;
}
strtmp = PyBytes_AsString(pystr);
str = (char *)malloc(strlen(strtmp) + 1);
if (str)
strcpy(str, strtmp);
Py_DECREF (pystr) ;
%#else
if (!PyString_Check(pyobj)) {
PyErr_SetString(PyExc_ValueError, "Expected a string");

SWIG fail;
}
str = PyString AsString(pyobj);
$#endif

17.5 Varargs and typemaps

170

}

}

%typemap (freearg) (...) {
$#if PY VERSION_HEX>=0x03000000

$#endif

SWIG-4.2 Documentation

vargs[i] = str;

$1 = (void *)vargs;

int ij;
for (i = 0; i < 10; i++) {
free(vargs$argnum[i]);

}

In the 'in' typemap, the special variable varargs is a tuple holding all of the extra arguments passed (this is specific to the Python module). The typemap then pulls this apart and sticks the
values into the array of strings args. Then, the array is assigned to $1 (recall that this is the void * variable corresponding to (.. .)). However, this assignment is only half of the picture----
clearly this alone is not enough to make the function work. The 'freearg’ typemap cleans up memory allocated in the 'in' typemap; this code is generated to be called after the exec1p function
is called. To patch everything up, you have to rewrite the underlying action code using the $feature directive like this:

}

%feature("action") execlp {

int execlp(const char *path, const char *arg, ...);

char **vargs = (char **) arg3;
result = execlp(argl, arg2, vargs[0], vargs[l], vargs[2], vargs[3], vargs[4],
vargs[5], vargs[6], vargs[7], vargs[8], vargs[9], NULL);

This patches everything up and creates a function that more or less works. However, don't try explaining this to your coworkers unless you know for certain that they've had several cups of

coffee.

If you really want to elevate your guru status and increase your job security, continue to the next section.

17.6 Varargs wrapping with libffi

Al of the previous examples have relied on features of SWIG that are portable and which don't rely upon any low-level machine-level details. In many ways, they have all dodged the real issue
of variable length arguments by recasting a varargs function into some weaker variation with a fixed number of arguments of known types. In many cases, this works perfectly fine. However, if
you want more generality than this, you need to bring out some bigger guns.

One way to do this is to use a special purpose library such as libffi (https:/www.sourceware.org/libffi/). libffi is a library that allows you to dynamically construct call-stacks and invoke
procedures in a relatively platform independent manner. Details about the library can be found in the libffi distribution and are not repeated here.

To illustrate the use of libffi, suppose that you really wanted to create a wrapper for execlp () that accepted any number of arguments. To do this, you might make a few adjustments to the
previous example. For example:

}

/* Take an arbitrary number of extra arguments and place into an array

%typemap(in) (...) {

/* Rewrite the function call, using libffi */

%feature("action") execlp {

of strings */

char **argv;
int argc;
int i;

argc = PyTuple Size(varargs);
argv = (char **) malloc(sizeof(char *)*(argc+l));
for (i = 0; i < argc; i++) {
PyObject *o = PyTuple GetItem(varargs, i);
if (!PyString_Check(o)) {
free(argv);
PyErr_SetString(PyExc_ValueError, "Expected a string");
SWIG_fail;
}
argv[i] = PyString AsString(o);
}
argv[i] = NULL;
$1 = (void *) argv;

int i, Sveh
{23, @Als3 @sle3g
ffi_type **types;
void **yalues;
char **args;

vc = PyTuple Size(varargs);

types = (ffi_type **) malloc((vc+3)*sizeof(ffi_type *));
values = (void **) malloc((vc+3)*sizeof(void *));
args = (char **) arg3;

/* Set up path parameter */
types[0] = &ffi_type_pointer;
values[0] = &argl;

/* Set up first argument */
types[1l] = &ffi type pointer;
values[1l] = &arg2;

/* Set up rest of parameters */
for (i = 0; i <= vc; i++) {
types[2+i] = &ffi_type_ pointer;
values[2+i] = &args[i];
}
if (ffi_prep_cif(&cif, FFI_DEFAULT ABI, vc+3,
&ffi_type uint, types) == FFI_OK) {
ffi call(&cif, (void (*)()) execlp, &result, values);
} else {
free(types);

17.6 Varargs wrapping with libffi

171

https://www.sourceware.org/libffi/

SWIG-4.2 Documentation

free(values);
free(arg3);

SWIG_fail;
¥
free(types);
free(values);
free(arg3);

}

/* Declare the function. Whew! */
int execlp(const char *path, const char *argl, ...);

Looking at this example, you may start to wonder if SWIG is making life any easier. Given the amount of code involved, you might also wonder why you didn't just write a hand-crafted wrapper!
Either that or you're wondering "why in the hell am | trying to wrap this varargs function in the first place?!?" Obviously, those are questions you'll have to answer for yourself.

As a more extreme example of libffi, here is some code that attempts to wrap printf (),

/* A wrapper for printf() using libffi */

%{
/* Structure for holding passed arguments after conversion */
typedef struct {
int type;
union {
int ivalue;
double dvalue;
void *pvalue;
} val;
} vtype;
enum { VT_INT, VT _DOUBLE, VT POINTER };
%}

%typemap(in) (const char *fmt, ...) {
vtype *argv;

int argc;

int i;

/* Format string */
$1 = PyString_ AsString($input);

/* Variable length arguments */
argc = PyTuple_Size(varargs);
argv = (vtype *) malloc(argc*sizeof(vtype));
for (i = 0; i < argc; i++) {
PyObject *o = PyTuple GetItem(varargs, i);
if (PyInt_Check(o)) {
argv[i].type = VT _INT;
argv[i].val.ivalue = PyInt_AsLong(o);
else if (PyFloat_Check(o)) {
argv[i].type = VT _DOUBLE;
argv[i].val.dvalue = PyFloat_ AsDouble(o);
else if (PyString_Check(o)) {
argv[i].type = VT POINTER;
argv[i].val.pvalue = (void *) PyString AsString(o);
else {
free(argv);
PyErr_SetString(PyExc_ValueError, "Unsupported argument type");
return NULL;

-~

-~

-~

}
$2 = (void *) argv;

}

/* Rewrite the function call using libffi */
%feature("action") printf {

int i, ve;

234, @pld @alsEg

ffi_type **types;

void **yvalues;

vtype *args;

vc = PyTuple Size(varargs);

types = (ffi_type **) malloc((vc+l)*sizeof(ffi_type *));
values = (void **) malloc((vc+l)*sizeof(void *));
args = (vtype *) arg2;

/* Set up fmt parameter */
types[0] = &ffi type pointer;
values[0] = &argl;

/* Set up rest of parameters */
for (i = 0; i < ve; i++) {
switch(args[i].type) {
case VT_INT:
types[1+i] = &ffi type_uint;
values[1l+i] = &args[i].val.ivalue;
break;
case VT_DOUBLE:
types[1+i] = &ffi_type_double;
values[1l+i] = &args[i].val.dvalue;
break;
case VT_POINTER:
types[1+i] = &ffi_type pointer;
values[1l+i] = &args[i].val.pvalue;
break;
default:
abort(); /* Whoa! We're seriously hosed */
break;

17.6 Varargs wrapping with libffi

SWIG-4.2 Documentation

}

if (ffi_prep_cif(&cif, FFI_DEFAULT ABI, vc+l,
&ffi_type_uint, types) == FFI_OK) {

ffi call(&cif, (void (*)()) printf, &result, values);

else {

free(types);

free(values);

free(args);

-~

SWIG fail;
}
free(types);
free(values);
free(args);

}

/* The function */
int printf(const char *fmt, ...);

Much to your amazement, it even seems to work if you try it:

>>> import example

>>> example.printf("Grade: $%s $d/60 = %0.2f%%\n", "Dave", 47, 47.0*100/60)
Grade: Dave 47/60 = 78.33%

>>>

Of course, there are still some limitations to consider:

>>> example.printf("la de da de da %s", 42)
Segmentation fault (core dumped)

And, on this note, we leave further exploration of libffi to the reader as an exercise. Although Python has been used as an example, most of the techniques in this section can be extrapolated
to other language modules with a bit of work. The only details you need to know is how the extra arguments are accessed in each target language. For example, in the Python module, we
used the special varargs variable to get these arguments. Modules such as Tcl8 and Perl5 simply provide an argument number for the first extra argument. This can be used to index into an
array of passed arguments to get values. Please consult the chapter on each language module for more details.

17.7 Wrapping of va_list

Closely related to variable length argument wrapping, you may encounter functions that accept a parameter of type va_1list. For example:

int vprintf(const char *fmt, va_list ap);

As far as we know, there is no obvious way to wrap these functions with SWIG. This is because there is no documented way to assemble the proper va_list structure (there are no C library
functions to do it and the contents of va_list are opaque). Not only that, the contents of a va_1ist structure are closely tied to the underlying call-stack. It's not clear that exporting a va_list
would have any use or that it would work at all.

A workaround can be implemented by writing a simple varargs C wrapper and then using the techniques discussed earlier in this chapter for varargs. Below is a simple wrapper for vprintf
renamed so that it can still be called as vprintf from your target language. The $varargs used in the example restricts the function to taking one string argument.

3{
int vprintf(const char *fmt, va_list ap);
%}

$varargs(const char *) my vprintf;
$rename(vprintf) my vprintf;

%inline %{

int my_vprintf(const char *fmt, ...) {
va_list ap;
int result;

va_start(ap, fmt);

result = vprintf(fmt, ap);
va_end(ap);

return result;

17.8 C++ Issues

Wrapping of C++ member functions that accept a variable number of arguments presents a number of challenges. By far, the easiest way to handle this is to use the $varargs directive. This
is portable and it fully supports classes much like the $rename directive. For example:

%varargs (10, char * = NULL) Foo::bar;

class Foo {

public:

virtual void bar(char *arg, ...); // gets varargs above
}i
class Spam: public Foo {
public:

virtual void bar(char *arg, ...); // gets varargs above
b

$varargs also works with constructors, operators, and any other C++ programming construct that accepts variable arguments.

Doing anything more advanced than this is likely to involve a serious world of pain. In order to use a library like libffi, you will need to know the underlying calling conventions and details of the
C++ ABI. For instance, the details of how this is passed to member functions as well as any hidden arguments that might be used to pass additional information. These details are
implementation specific and may differ between compilers and even different versions of the same compiler. Also, be aware that invoking a member function is further complicated if it is a

17.7 Wrapping of va_list

SWIG-4.2 Documentation

virtual method. In this case, invocation might require a table lookup to obtain the proper function address (although you might be able to obtain an address by casting a bound pointer to a
pointer to function as described in the C++ ARM section 18.3.4).

If you do decide to change the underlying action code, be aware that SWIG always places the this pointer in argl. Other arguments are placed in arg2, arg3, and so forth. For example:

%feature("action") Foo::bar {

result = argl->bar(arg2, arg3, etc.);

Given the potential to shoot yourself in the foot, it is probably easier to reconsider your design or to provide an alternative interface using a helper function than it is to create a fully general
wrapper to a varargs C++ member function.

17.9 Discussion

This chapter has provided a number of techniques that can be used to address the problem of variable length argument wrapping. If you care about portability and ease of use, the $varargs
directive is probably the easiest way to tackle the problem. However, using typemaps, it is possible to do some very advanced kinds of wrapping.

One point of discussion concerns the structure of the libffi examples in the previous section. Looking at that code, it is not at all clear that this is the easiest way to solve the problem. However,
there are a number of subtle aspects of the solution to consider--mostly concerning the way in which the problem has been decomposed. First, the example is structured in a way that tries to
maintain separation between wrapper-specific information and the declaration of the function itself. The idea here is that you might structure your interface like this:

%typemap(const char *fmt, ...) {

}

%feature("action") traceprintf {

}

/* Include some header file with traceprintf in it */
%include "someheader.h"

Second, careful scrutiny will reveal that the typemaps involving (. . .) have nothing whatsoever to do with the libffi library. In fact, they are generic with respect to the way in which the function
is actually called. This decoupling means that it will be much easier to consider other library alternatives for making the function call. For instance, if libffi wasn't supported on a certain platform,
you might be able to use something else instead. You could use conditional compilation to control this:

#ifdef USE_LIBFFI
%feature("action") printf {

}
#endif

#ifdef USE_OTHERFFI
%feature("action") printf {

}
#endif

Finally, even though you might be inclined to just write a hand-written wrapper for varargs functions, the techniques used in the previous section have the advantage of being compatible with
all other features of SWIG such as exception handling.

As a final word, some C programmers seem to have the assumption that the wrapping of variable length argument functions is an easily solved problem. However, this section has hopefully
dispelled some of these myths. All things being equal, you are better off avoiding variable length arguments if you can. If you can't avoid them, please consider some of the simple solutions
first. If you can't live with a simple solution, proceed with caution. At the very least, make sure you carefully read the section "A7.3.2 Function Calls" in Kernighan and Ritchie and make sure
you fully understand the parameter passing conventions used for varargs. Also, be aware of the platform dependencies and reliability issues that this will introduce. Good luck.

18 SWIG and Doxygen Translation

Doxygen translation overview
Preparations
o Enabling Doxygen translation
o Doxygen-specific %feature directives
= doxygen:notranslate
= doxygen:alias:<ccommand-name>
= doxygen:ignore:<command-name>
= doxygen:nolinktranslate
= doxygen:nostripparams
o Additional command line options
« Doxygen to Javadoc
o Basic example
o Javadoc tags
o Unsupported tags
o Further details
Doxygen to Pydoc
o Basic example
o Pydoc translator
o Unsupported tags
o Further details
Troubleshooting
o Problem with conditional compilation
Developer information
o Doxygen translator design
o Debugging the Doxygen parser and translator
o Tests

Extending to other languages

This chapter describes SWIG's support for translating Doxygen comments found in interface and header files into a target language's normal documentation language. Currently only Javadoc
and Pydoc is supported.

18.1 Doxygen translation overview

17.9 Discussion

SWIG-4.2 Documentation

The Doxygen Translation module of SWIG adds an extra layer of functionality to SWIG, allowing automated translation of Doxygen formatted comments from input files into a documentation
language more suited for the target language. Currently this module only translates into Javadoc and Pydoc for the SWIG Java and Python modules. Other extensions could be added at a
later date. The Doxygen Translation module originally started as a Google Summer of Code proposal from Summer 2008.

18.2 Preparations

To make use of the comment translation system, your documentation comments must be in properly formatted Doxygen. Doxygen comments can be present in your main SWIG interface file
or any header file that it imports. You are advised to be validate that your comments compile properly with Doxygen before you try to translate them. Doxygen itself is a more comprehensive
tool and can provide you better feedback for correcting any syntax errors that may be present. Please look at Doxygen's Documenting the code for the full comment format specifications.
However, SWIG's Doxygen parser will still report many errors and warnings found in comments (like unterminated strings or missing ending tags).

Currently, the whole subset of Doxygen comment styles is supported (See Documenting the code). Here they are:

/**

* Javadoc style comment, multiline
B

/%1

* QT-style comment, multiline

74

/**

Any of the above, but without intermediate *'s
*/

/// Single-line comment

//! Another single-line comment

Also any of the above with '<' added after comment-starting symbol, like /**<, /x1<, ///<, or//!< will be treated as a post-comment and will be assigned to the code before the
comment. Any number of "*' or '/* within a Doxygen comment is considered to be a separator and is not included in the final comment, so you may safely use comments like /**%x*%x%x/ or
1111111771.

Please note, as SWIG parses the input file by itself with strict grammar, there is only a limited support for various cases of comment placement in the file.

Comments can be placed before C/C++ expressions on separate lines:

/**
* Some comment
74
void someOtherFunction();
/x*
* Some comment
*/
void someFunction();

class Shape {
/*
* Calculate the area in cm"2
@/
int getArea();
}

After C/C++ expressions at the end of the line:

int someVariable = 9; ///< This is a var holding magic number 9
void doNothing(); ///< This does nothing, nop

and in some special cases, like function parameter comments:

void someFunction(
int a ///< Some parameter

)i

or enum element comments:

enum E_NUMBERS

{
EN_ZERO, ///< The first enum item, gets zero as its value
EN_ONE, ///< The second, EN_ONE=1
EN_THREE

}i

Currently only comments directly before or after the code items are supported. Doxygen also supports comments containing structural commands, where the comments for a code item are not
put directly before or after the code item. These structural commands are stripped out by SWIG and are not assigned to anything.

18.2.1 Enabling Doxygen translation

Doxygen comments translation is disabled by default and needs to be explicitly enabled using the command line -doxygen option for the languages that do support it (currently Java and
Python).

18.2.2 Doxygen-specific %feature directives
Translation of Doxygen comments is influenced by the following %feature directives:
18.2.2.1 doxygen:notranslate

Turns off translation of Doxygen comments to the target language syntax: the original comment will be copied to the output unchanged. This is useful if you want to use Doxygen itself to
generate documentation for the target language instead of the corresponding language tool (javadoc, sphinx, ...).

18.2.2.2 doxygen:alias:<command-name>

Specify an alias for a Doxygen command with the given name. This can be useful for custom Doxygen commands which can be defined using ALIASES option for Doxygen itself but which are
unknown to SWIG. "command-name" is the name of the command in the Doxyfile, e.g. if it contains

18.2 Preparations

175

https://www.doxygen.nl/manual/
https://developers.google.com/open-source/gsoc/2008/
https://www.doxygen.nl/manual/
https://www.doxygen.nl/manual/docblocks.html
https://www.doxygen.nl/manual/docblocks.html

SWIG-4.2 Documentation

ALIASES = "sideeffect=\par Side Effects:\n"

Then you could also specify the same expansion for SWIG with:

%$feature("doxygen:alias:sideeffect") "\par Side Effects:\n"

Please note that command arguments are not currently supported with this feature.

Notice that it is perfectly possible and potentially useful to define the alias expansion differently depending on the target language, e.g. with

#ifdef SWIGJAVA

$feature("doxygen:alias:not_for_ java") "This functionality is not available for Java"
#else

$feature("doxygen:alias:not_for_java") ""

#endif

you could use @not_for_java in the documentation comments of all functions which can't, for whatever reason, be currently exposed in Java wrappers of the C++ API.

18.2.2.3 doxygen:ignore:<command-name>

This feature makes it possible to just ignore an unknown Doxygen command, instead of replacing it with the predefined text that doxygen:alias does. For example, you could use

%feature("doxygen:ignore:transferfull") Fantastic();
/%%
A fantastic function.

@transferfull Command ignored, but anything here is still included.
*/
int * Fantastic();

if you use a custom Doxygen transferfull command to indicate that the return value ownership is transferred to the caller, as this information doesn't make much sense for the other

languages without explicit ownership management.

Doxygen syntax is rather rich and, in addition to simple commands such as @transferfull, it is also possible to define commands with arguments. As explained in Doxygen documentation,
the arguments can have a range of a single word, everything until the end of line or everything until the end of the next paragraph. Currently, only the "end of line" case is supported using the

range="1line" argument of the feature directive:

// Ignore occurrences of
// @compileroptions Some special C++ compiler options.

// in Doxygen comments as C++ options are not interesting for the target language
// developers.
2feature("doxygen:ignore:compileroptions", range="line") Amazing();

/**

An amazing function.

@compileroptions This function must be compiled with /EHa when using MSVC.
*/
void Amazing();

In addition, it is also possible to have custom pairs of begin/end tags, similarly to the standard Doxygen @code/@endcode, for example. Such tags can also be ignored using the special value

of range starting with end to indicate that the range is an interval, for example:

2feature("doxygen:ignore:forcpponly", range="end"); // same as "end:endforcpponly"
/%
An incredible function.

@forcpponly
This is C++-specific.
@endforcpponly
74
void Incredible();

would ignore everything between @ forcpponly and @endforcpponly commands in Doxygen comments. By default, the name of the end command is the same as of the start one with

"end" prefix, following Doxygen conventions, but this can be overridden by providing the end command name after the colon.

This example shows how custom tags can be used to bracket anything specific to C++ and prevent it from appearing in the target language documentation. Conversely, another pair of custom
tags could be used to put target language specific information in the C++ comments. In this case, only the custom tags themselves should be ignored, but their contents should be parsed as

usual and contents="parse" can be used for this:

%feature("doxygen:ignore:beginPythonOnly", range="end:endPythonOnly", contents="parse");
[%%
A splendid function.

@beginPythonOnly
This is specific to @b Python.
@endPythonOnly
*/
void Splendid();

Putting everything together, if these directives are in effect:

%feature("doxygen:ignore:transferfull");
%feature("doxygen:ignore:compileroptions", range="line");
%feature("doxygen:ignore:forcpponly", range="end");

18.2 Preparations

176

https://www.doxygen.nl/manual/commands.html

SWIG-4.2 Documentation

%feature("doxygen:ignore:beginPythonOnly", range="end:endPythonOnly", contents="parse");

then the following C++ Doxygen comment:

[%%
A contrived example of ignoring too many commands in one comment.

@forcpponly
This is C++-specific.
@endforcpponly

@beginPythonOnly
This is specific to @b Python.
@endPythonOnly

@transferfull Command ignored, but anything here is still included.
@compileroptions This function must be compiled with /EHa when using MSVC.

*/
int * Contrived();

would be translated to this comment in Python:

def func():
rrun
A contrived example of ignoring too many commands in one comment.

This is specific to **Python**.
Command ignored, but anything here is still included.

won

18.2.2.4 doxygen:nolinktranslate
Turn off automatic link-objects translation. This is only applicable to Java at the moment.

18.2.2.5 doxygen:nostripparams

Turn off stripping of @param and @tparam Doxygen commands if the parameter is not found in the function signature. This is only applicable to Java at the moment.

18.2.3 Additional command line options
ALSO TO BE ADDED (Javadoc auto brief?)

18.3 Doxygen to Javadoc

If translation is enabled, Javadoc formatted comments should be automatically placed in the correct locations in the resulting module and proxy files.
18.3.1 Basic example

Here is an example segment from an included header file

/*! This is describing class Shape
\author Bob
*/

class Shape {
public:
Shape() {
nshapes++;
}
virtual ~Shape() {
nshapes--;

Yi
double x, y; /*!< Important Variables */
void move (double dx, double dy); /*!< Moves the Shape */
virtual double area(void) = 0; /*!< \return the area */
virtual double perimeter(void) = 0; /*!< \return the perimeter */
static int nshapes;

Yi

Simply running SWIG should result in the following code being present in Shapes.java

VEZS
* This is describing class Shape

* Qauthor Bob
*

*/
public class Shape {

/**x
* Important Variables
*/
public void setX(double value) {
ShapesJNI.Shape x set(swigCPtr, this, value);
}

/**

18.3 Doxygen to Javadoc

177

SWIG-4.2 Documentation

* Important Variables
&
public double getX() {
return ShapesJNI.Shape x get(swigCPtr, this);
¥

/%%
* Moves the Shape
*/
public void move(double dx, double dy) {
ShapesJNI.Shape move(swigCPtr, this, dx, dy);
}

J%x
* @return the area
*/
public double area() {
return ShapesJNI.Shape_area(swigCPtr, this);
}

/%%
* @return the perimeter
*/
public double perimeter() {
return ShapesJNI.Shape perimeter(swigCPtr, this);
}

The code Java-wise should be identical to what would have been generated without the doxygen functionality enabled. When the Doxygen Translator module encounters a comment that
contains nothing useful or a doxygen comment that it cannot parse, it will not affect the functionality of the SWIG generated code.

The Javadoc translator will handle most of the tags conversions (see the table below). It will also automatically translate link-objects params, in \see and \link...\endlink commands. For
example, 'someFunction(std::string)' will be converted to 'someFunction(String)'. If you don't want such behaviour, you could turn this off by using the 'doxygen:nolinktranslate' feature. Also all
‘\param' and "\tparam' commands are stripped out, if the specified parameter is not present in the function. Use 'doxygen:nostripparams' to avoid.

Javadoc translator features summary (see %feature directives):

18.3.2 Javadoc tags

Here is the list of all Doxygen tags and the description of how they are translated to Javadoc

Doxygen tags

\a wrapped with <i> html tag

\arg wrapped with <1i> html tag

\author translated to @author

\authors translated to @author

\b wrapped with html tag

\c wrapped with <code> html tag

\cite wrapped with <i> html tag

\code translated to {@code ...}

\code {<ext>} translated to {@code ...}; code language extension is ignored
\cond translated to 'Conditional comment: <condition>'
\copyright replaced with 'Copyright:'

\deprecated translated to @deprecated

\e wrapped with <i> html tag

\else replaced with '}Else:{'

\elseif replaced with '}Else if: <condition>{'

\em wrapped with <i> html tag

\endcode see note for \code

\endcond replaced with 'End of conditional comment.'
\endif replaced with '}

\endlink see note for \link

\endverbatim see note for \verbatim

\exception translated to @exception

\f$, \f[, \f], \f{, \f} LateX formulas are left unchanged

\if replaced with 'If: <condition> {'

\ifnot replaced with 'If not: <condition> {'

\image translated to html tag only if target=HTML
\1i wrapped with <1i> html tag

\1link translated to {@link ...}

\n replaced with newline char

\note replaced with 'Note:'

\overload prints 'This is an overloaded ...' according to Doxygen docs
\p wrapped with <code> html tag

\par replaced with <p alt='title'>...</p>

\param translated to @param

\param[<dir>] translated to @param; parameter direction ('in'; 'out'; or 'in,out') is ignored
\remark replaced with 'Remarks:'

\remarks replaced with 'Remarks:'

\result translated to @return

\return translated to @return

\returns translated to @return

\sa translated to @see

\see translated to @see

\since translated to @since

\throw translated to @throws

\throws translated to @throws

\todo replaced with 'TODO: "'

\tparam translated to @param

18.3 Doxygen to Javadoc

SWIG-4.2 Documentation

\verbatim translated to {@literal ...}
\version translated to @version
\warning translated to 'Warning:'
\$ prints $ char

\e prints @ char

\\ prints \ char

\& prints & char

N= prints ~ char

\< prints < char

\> prints > char

\# prints # char

\% prints % char

A" prints " char

Vo prints . char

\88 prints ::

18.3.3 Unsupported tags

Doxygen has a wealth of tags such as @latexonly that have no equivalent in Javadoc (all supported tags are listed in Javadoc documentation). As a result several tags have no translation or
particular use, such as some linking and section tags. These are suppressed with their content just printed out (if the tag has any sense, typically text content). Here is the list of these tags:

Unsupported Doxygen tags

\addindex
\addtogroup
\anchor
\attention
\brief

\bug
\callergraph
\callgraph
\category
\class
\copybrief
\copydetails
\copydoc
\date

\def
\defgroup
\details
\dir
\dontinclude
\dot
\dotfile
\enddot
\endhtmlonly
\endinternal
\endlatexonly
\endmanonly
\endmsc
\endrtfonly
\endxmlonly
\enum
\example
\extends
\file

\fn
\headerfile
\hideinitializer
\htmlinclude
\htmlonly
\implements
\include
\includelineno
\ingroup
\interface
\internal
\invariant
\latexonly
\line
\mainpage
\manonly
\memberof
\msc
\mscfile
\name
\namespace
\nosubgrouping
\package
\page
\paragraph
\post

\pre
\private
\privatesection
\property
\protected
\protectedsection
\protocol
\public
\publicsection
\ref
\related
\relatedalso
\relates
\relatesalso
\retval
\rtfonly

18.3 Doxygen to Javadoc

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html

SWIG-4.2 Documentation

\section

\short
\showinitializer
\skip

\skipline
\snippet

\struct

\subpage
\subsection
\subsubsection
\tableofcontents
\test

\typedef

\union

\until

\var
\verbinclude
\weakgroup
\xmlonly
\xrefitem

If one of the following Doxygen tags appears as the first tag in a comment, the whole comment block is ignored:

Ignored Doxygen tags

\addtogroup
\callergraph
\callgraph
\category
\class

\def
\defgroup
\dir

\enum
\example
\file

\fn
\headerfile
\hideinitializer
\interface
\internal
\mainpage
\name
\namespace
\nosubgrouping
\overload
\package
\page
\property
\protocol
\relates
\relatesalso
\showinitializer
\struct
\typedef
\union

\var
\weakgroup

18.3.4 Further details

TO BE ADDED.

18.4 Doxygen to Pydoc

If translation is enabled, Pydoc formatted comments should be automatically placed in the correct locations in the resulting module and proxy files. The problem is that Pydoc has no tag

mechanism like Doxygen or Javadoc, so most of Doxygen commands are translated by merely copying the appropriate command text.
18.4.1 Basic example

Here is an example segment from an included header file

/*! This is describing class Shape
\author Bob
*/

class Shape {
public:
Shape() {
nshapes++;
}
virtual ~Shape() {
nshapes--;

Yi

double x, y; /*!< Important Variables */

void move (double dx, double dy); /*!< Moves the Shape */
virtual double area(void) = 0; /*!< \return the area */

virtual double perimeter(void) = 0; /*!< \return the perimeter */
static int nshapes;

Simply running SWIG should result in the following code being present in Shapes.py

18.4 Doxygen to Pydoc

180

SWIG-4.2 Documentation

class Shape(_object):
This is describing class Shape
Authors:
Bob

def move(self, *args):

Moves the Shape

return _Shapes.Shape move(self, *args)

def area(self):
Return:
the area

return _Shapes.Shape area(self)

def perimeter(self):
Return:
the perimeter

return _Shapes.Shape perimeter(self)

If any parameters of a function or a method are documented in the Doxygen comment, their description is copied into the generated output using Sphinx documentation conventions. For
example

/%
Set a breakpoint at the given location.

@param filename The full path to the file.
@param line_number The line number in the file.
*/
bool SetBreakpoint(const char* filename, int line number);

would be translated to

def SetBreakpoint(filename, line number):
prnn
Set a breakpoint at the given location.

:type filename: string

:param filename: The full path to the file.
:type line_number: int

:param line number: The line number in the file.

The types used for the parameter documentation come from the "doctype" typemap which is defined for all the primitive types and a few others (e.g. std: :string and shared_ptr<T>) but
for non-primitive types is taken to be just the C++ name of the type with namespace scope delimiters (: :) replaced with a dot. To change this, you can define your own typemaps for the
custom types, e.g:

%typemap(doctype) MyDate "datetime.date"

Currently Doxygen comments assigned to global variables and static member variables are not present in generated code, so they have no comment translated for them.

Whitespace and tables Whitespace is preserved when translating comments, so it makes sense to have Doxygen comments formatted in a readable way. This includes tables, where tags
<th>, <td> and </tr>are translated to '|'. The line after line with <th> tags contains dashes. If we take care about whitespace, comments in Python are much more readable. Example:

/**

* <table border = '1'>

* <caption>Animals</caption>

* <tr><th> Column 1 </th><th> Column 2 </th></tr>
* <tr><td> cow </td><td> dog </td></tr>
* <tr><td> cat </td><td> mouse </td></tr>
* <tr><td> horse </td><td> parrot </td></tr>
* </table>

*/

translates to Python as:

Animals

column 1	Column 2
cow	dog
cat	mouse
horse	parrot

Overloaded functions Since all the overloaded functions in c++ are wrapped into one Python function, Pydoc translator will combine every comment of every overloaded function and put it
into the comment for the one wrapper function.

If you intend to use resulting generated Python file with the Doxygen docs generator, rather than Pydoc, you may want to turn off translation completely (doxygen:notranslate feature). Then
SWIG will just copy the comments to the proxy file and reformat them if needed, but all the comment content will be left as is. As Doxygen doesn't support special commands in Python
comments (see Doxygen docs), you may want to use some tool like doxypy (doxypy) to do the work.

18.4.2 Pydoc translator

Here is the list of all Doxygen tags and the description of how they are translated to Pydoc

18.4 Doxygen to Pydoc

https://www.sphinx-doc.org/
https://www.doxygen.nl/manual/docblocks.html#pythonblocks
https://pypi.org/project/doxypy/

SWIG-4.2 Documentation

Doxygen tags

\a wrapped with '*'

\arg prepended with '* '

\author prints 'Author:'

\authors prints 'Authors:'

\b wrapped with '**'

\c wrapped with '~

\cite wrapped with single quotes

\code replaced with '.. code-block:: c++'
\eode(sext>) TF e ava > Sava

\cond translated to 'Conditional comment: <condition>'
\copyright prints 'Copyright:'

\deprecated prints 'Deprecated:'

\e wrapped with '*'

\else replaced with '}Else:{"'

\elseif replaced with '}Else if: <condition>{'
\em wrapped with '*'

\endcond replaced with 'End of conditional comment.'
\endif replaced with '}

\example replaced with 'Example:'

\exception replaced with ':raises:'

\f$ rendered using ':math: '

\f[rendered using '.. math::'

\f{ rendered using '.. math:

\if replaced with 'If: <condition> {'
\ifnot replaced with 'If not: <condition> {'
\1i prepended with '* '

\n replaced with newline char

\note replaced with 'Note:'

\overload prints 'This is an overloaded ...' according to Doxygen docs
\p wrapped with '~

\par replaced with 'Title: ...'

\param add ':type:' and ':param:' directives

\param[<dir>] same as \param, but direction ('in'; 'out'; 'in,out') is included in

\remark replaced with 'Remarks:'

\remarks replaced with 'Remarks:'

\result add ':rtype:' and ':return:' directives
\return add ':rtype:' and ':return:' directives
\returns add ':rtype:' and ':return:' directives
\sa replaced with 'See also:'

\see replaced with 'See also:'

\since replaced with 'Since:'

\throw replaced with ':raises:'

\throws replaced with ':raises:'

\todo replaced with 'TODO:"'

\tparam add ':type:' and ':param:' directives
\verbatim content copied verbatim

\version replaced with 'Version:'

\warning translated to 'Warning:'

\$ prints $ char

\@ prints @ char

AR prints \ char

\& prints & char

\= prints ~ char

\< prints < char

\> prints > char

\# prints # char

\% prints % char

A" prints " char

Vo prints character

\88 prints ::

: <lang>', where the following doxygen code languages are recognized: .c -> C,

':type:' directive

-PY

18.4.3 Unsupported tags

Doxygen has a wealth of tags such as @latexonly that have no equivalent in Pydoc. As a result several tags that have no translation (or particular use, such as some linking and section tags)

are suppressed with their content just printed out (if it has any sense, typically text content). Here is the list of these tags:

Unsupported Python Doxygen tags

\addindex
\addtogroup
\anchor
\attention
\brief

\bug
\callergraph
\callgraph
\category
\class
\copybrief
\copydetails
\copydoc
\date

\def
\defgroup
\details
\dir
\dontinclude

18.4 Doxygen to Pydoc

182

SWIG-4.2 Documentation

\dot

\dotfile
\enddot
\endhtmlonly
\endinternal
\endlatexonly
\endlink
\endmanonly
\endmsc
\endrtfonly
\endxmlonly
\enum

\extends

\file

\fn
\headerfile
\hideinitializer
\htmlinclude
\htmlonly
\image
\implements
\include
\includelineno
\ingroup
\interface
\internal
\invariant
\latexonly
\line

\1link
\mainpage
\manonly
\memberof

\msc

\mscfile

\name
\namespace
\nosubgrouping
\package

\page
\paragraph
\post

\pre

\private
\privatesection
\property
\protected
\protectedsection
\protocol
\public
\publicsection
\ref

\related
\relatedalso
\relates
\relatesalso
\retval
\rtfonly
\section
\short
\showinitializer
\skip
\skipline
\snippet
\struct
\subpage
\subsection
\subsubsection
\tableofcontents
\test

\typedef
\union

\until

\var
\verbinclude
\weakgroup
\xmlonly
\xrefitem

18.4.4 Further details

TO BE ADDED.
18.5 Troubleshooting

When running SWIG with command line option —~doxygen, it may happen that SWIG will fail to parse the code, which is valid C++ code and is parsed without problems without the option. The

problem is, that Doxygen comments are not tokens (the C/C++ compiler actually never sees them) and that they can appear anywhere in the code. That's why it is practically impossible to

handle all corner cases with the parser. However, these problems can usually be avoided by minor changes in the code or comment. Known problems and solutions are shown in this section.

Recommended approach is to first run SWIG without command line option ~doxygen. When it successfully processes the code, include the option and fix problems with Doxygen comments.
18.5.1 Problem with conditional compilation

Inserting a conditional compilation preprocessor directive between a Doxygen comment and a commented item may break parsing:

class A {
/**
* Some func.
*/

18.5 Troubleshooting

SWIG-4.2 Documentation

#ifndef SWIG
void myfunc()
{
}
#endif

}i

The solution is to move the directive above the comment:

class A {
#ifndef SWIG
/**x
* Some func.
*/
void myfunc()
{
}
#endif
}i

18.6 Developer information
This section contains information for developers enhancing the Doxygen translator.
18.6.1 Doxygen translator design

If this functionality is turned on, SWIG places all comments found into the SWIG parse tree. Nodes contain an additional attribute called doxygen when a comment is present. Individual nodes
containing Doxygen with Structural Indicators, such as @file, as their first command, are also present in the parse tree. These individual "blobs" of Doxygen such as :

/*! This is describing function Foo
\param x some random variable
\author Bob
\return Foo
*/

are passed on individually to the Doxygen Translator module. This module builds its own private parse tree and hands it to a separate class for translation into the target documentation
language. For example, JavaDocConverter is the Javadoc module class.

18.6.2 Debugging the Doxygen parser and translator

There are two handy command line options, that enable lots of detailed debug information printing.

-debug-doxygen-parser - Display Doxygen parser module debugging information
-debug-doxygen-translator - Display Doxygen translator module debugging information

18.6.3 Tests

Doxygen tests have been added to the regular SWIG test-suite. There are a number of tests beginning doxygen_ in the Examples/test-suite sub-directory.

Like any other SWIG test case, the tests are included in Examples/test-suite/common.mk and can be tested with commands like make check-test-suite ormake check-python-test-
suite. To run them individually, type make -s <testname>.cpptest in the language-specific sub-directory in Examples/test-suite directory. For example:

Examples/test-suite/java $ make -s doxygen parsing.cpptest

If the test fails, both expected and translated comments are printed to std out, but also written to files expected.txt and got.txt. Since it is often difficult to find a single character difference in
several lines of text, we can use some diff tool, for example:

Examples/test-suite/java $ kdiff3 expected.txt got.txt

Runtime tests in Java are implemented using Javadoc doclets. To make that work, you should have tools.jar from the JDK in your classpath. Or you should have JAVA_HOME environment
variable defined and pointing to the JDK location.

The Java's comment parsing code (the testing part) is located in commentParser.java. It checks the generated code. It is possible to run this file as a stand-alone program, with java
commentParser <some java package>, and it will print the list of comments found in the specified directory (in the format it has used in the runtime tests). So, when you want to create a
new Doxygen test case, just copy an existing one and replace the actual comment content (section of entries in form 'wantedComments.put(...)" with the output of the above command.

Runtime tests in Python are just plain string comparisons of the __doc___ properties.
18.7 Extending to other languages

In general, an extension to another language requires a fairly deep understanding of the target language module, such as Modules/python.cxx for Python. Searching for "doxygen” in the
java.cxx module can give you a good idea of the process for placing documentation comments into the correct areas. The basic gist is that anywhere a comment may reside on a node, there
needs to be a catch for it in front of where that function, class, or other object is written out to a target language file. The other half of extension is building a target documentation language
comment generator that handles one blob at a time. However, this is relatively simple and nowhere near as complex as the wrapper generating modules in SWIG. See
Source/Doxygen/javadoc.cxx for a good example. The target language module passes the Doxygen Translator the blob to translate, and receives back the translated text.

What is given to the Doxygen Translator

/*! This is describing function Foo
\param x some random variable
\author Bob
\return Foo
*/

What is received back by java.cxx

/** This is describing function Foo
*

18.6 Developer information

SWIG-4.2 Documentation

* @param x some random variable
* Qauthor Bob

* @return Foo

*/

Development of the comment translator itself is simplified by the fact that the Doxygen Translator module can easily include a main function and thus be developed, compiled, and tested
independently of SWIG.

19 Warning Messages

Introduction

Warning message suppression

Enabling extra warnings

Issuing a warning message

Symbolic symbols

Commentary

Warnings as errors

Message output format

Warning number reference

Deprecated features (100-199
Preprocessor (200-299

C/C++ Parser (300-399)
Types and typemaps (400-499
Code generation (500-559)
Doxygen comments (560-599)
Language module specific (700-899)
User defined (900-999)

°

°

°

°

°

o

°

°

History

19.1 Introduction

During compilation, SWIG may generate a variety of warning messages. For example:

example.i:16: Warning 501: Overloaded declaration ignored. bar(double)
example.i:15: Warning 501: Previous declaration is bar(int)

Typically, warning messages indicate non-fatal problems with the input where the generated wrapper code will probably compile, but it may not work like you expect.
19.2 Warning message suppression

All warning messages have a numeric code that is shown in the warning message itself. To suppress the printing of a warning message, a number of techniques can be used. First, you can
run SWIG with the -w command line option. For example:

% swig -python -w501 example.i
% swig -python -w501,505,401 example.i

Alternatively, warnings can be suppressed by inserting a special preprocessor pragma into the input file:

gmodule example
#pragma SWIG nowarn=501
#pragma SWIG nowarn=501,505,401

Finally, code-generation warnings can be disabled on a declaration by declaration basis using the $warnfilter directive. For example:

%module example

gwarnfilter(501) foo;

int foo(int);

int foo(double); // Silently ignored.

The swarnfilter directive has the same semantics as other declaration modifiers like $rename, $ignore and $feature, see the %feature directive section. For example, if you wanted to
suppress a warning for a method in a class hierarchy, you could do this:

gwarnfilter(501) Object::foo;
class Object {
public:
int foo(int);
int foo(double); // silently ignored

}i
class Derived : public Object {
public:

int foo(int);

int foo(double); // Silently ignored

}i

Warnings can be suppressed for an entire class by supplying a class name. For example:

gwarnfilter(501) Object;
class Object {
public:

e // All 501 warnings ignored in class

19.1 Introduction

SWIG-4.2 Documentation

There is no option to suppress all SWIG warning messages. The warning messages are there for a reason---to tell you that something may be broken in your interface. Ignore the warning
messages at your own peril.

19.3 Enabling extra warnings

Some warning messages are disabled by default and are generated only to provide additional diagnostics. These warnings can be turned on using the -Wextra option. For example:

% swig -Wextra -python example.i

Preprocessor warning 202 ("Could not evaluate expression expr.") was formally off by default and enabled by-wextra, but since SWIG 4.1.0 this warning is on by default because
suppressing it tends to hide genuine problems. If you really don't want to see it, you can suppress it with -w202 or using $warnfilter as described below. Both will work with older versions
of SWIG too.

To selectively turn on extra warning messages, you can use the directives and options in the previous section--simply add a "+" to all warning numbers. For example:

% swig -w+309,+452 example.i

or in your interface file use either

#pragma SWIG nowarn=+309,+452

or

$warnfilter(+309,+452) foo;

Note: selective enabling of warnings with $warnfilter overrides any global settings you might have made using -w or #pragma.

You can of course also enable all warnings and suppress a select few, for example:

% swig -Wextra -w309,452 example.i

The warnings on the right take precedence over the warnings on the left, so in the above example -Wextra adds numerous warnings including 452, but then -w309, 452 overrides this and
s0 452 is suppressed.

If you would like all warnings to appear, regardless of the warning filters used, then use the -wall option. The -Wall option also turns on the extra warnings that -Wwextra adds, however, it is
subtely different. When -wall is used, it also disables all other warning filters, that is, any warnings suppressed or added in $warnfilter, #pragma SWIG nowarn or the -w option.

19.4 Issuing a warning message

Warning messages can be issued from an interface file using a number of directives. The $warn directive is the most simple:

gwarn "900:This is your last warning!"

All warning messages are optionally prefixed by the warning number to use. If you are generating your own warnings, make sure you don't use numbers defined in the table at the end of this
section.

The $ignorewarn directive is the same as $ignore except that it issues a warning message whenever a matching declaration is found. For example:

%ignorewarn("362:operator= ignored") operator=;

Warning messages can be associated with typemaps using the warning attribute of a typemap declaration. For example:

$typemap(in, warning="901:You are really going to regret this usage of $1_type $1 name") blah * {

}

In this case, the warning message will be printed whenever the typemap is actually used and the special variables will be expanded as appropriate, for example:

example.i:23: Warning 901: You are really going to regret this usage of blah * self
example.i:24: Warning 901: You are really going to regret this usage of blah * stuff

19.5 Symbolic symbols

The swigwarn. swg file that is installed with SWIG contains symbol constants that could also be used in $warnfilter and #pragma SWIG nowarn. For example this file contains the
following line:

¢define SWIGWARN_ TYPE_ UNDEFINED CLASS 401 $enddef

SO SWIGWARN_TYPE_ UNDEFINED_CLASS could be used instead of 401, for example:

#pragma SWIG nowarn=SWIGWARN_TYPE_UNDEFINED_CLASS

or

$warnfilter (SWIGWARN_TYPE UNDEFINED_CLASS) Foo;

19.3 Enabling extra warnings

186

SWIG-4.2 Documentation

19.6 Commentary

The ability to suppress warning messages is really only provided for advanced users and is not recommended in normal use. You are advised to modify your interface to fix the problems
highlighted by the warnings wherever possible instead of suppressing warnings.

Certain types of SWIG problems are errors. These usually arise due to parsing errors (bad syntax) or semantic problems for which there is no obvious recovery. There is no mechanism for
suppressing error messages.

19.7 Warnings as errors
Warnings can be handled as errors by using the ~-Werror command line option. This will cause SWIG to exit with a non successful exit code if a warning is encountered.
19.8 Message output format

The output format for both warnings and errors can be selected for integration with your favourite IDE/editor. Editors and IDEs can usually parse error messages and if in the appropriate format
will easily take you directly to the source of the error. The standard format is used by default except on Windows where the Microsoft format is used by default. These can be overridden using
command line options, for example:

$ swig -python -Fstandard example.i
example.i:4: Syntax error in input(1l).

$ swig -python -Fmicrosoft example.i
example.i(4) : Syntax error in input(1l).

19.9 Warning number reference

19.9.1 Deprecated features (100-199)
« 126. The 'nestedworkaround' feature is deprecated.
19.9.2 Preprocessor (200-299)

201. Unable to find filename.

202. Could not evaluate expression expr.

203. Both includeall and importall are defined: using includeall.
204. CPP #warning, "warning".

205. CPP #error, "error".

206. Unexpected tokens after #directive directive.

19.9.3 C/C++ Parser (300-399)

¢ 301. class keyword used, but not in C++ mode.

« 302. Redefinition of identifier name' as declignored.

« 303. gextend defined for an undeclared class name .

« 304. Unsupported constant value (ignored).

« 305. Bad constant value (ignored).

308. Namespace alias ‘name' not allowed here. Assuming 'name'

309. [private | protected] inheritance ignored.

312. Unnamed nested class not currently supported (ignored).

« 313. Unrecognized extern type "name" (ignored).

« 314.'identifier is a lang keyword.

« 315. Nothing known about ‘identifier .

« 317. Specialization of non-template ‘name'.

« 318. Instantiation of template name' is ambiguous, instantiation templ used, instantiation templignored.

« 319. No access specifier given for base class name (ignored).

« 320. Explicit template instantiation ignored.

« 321. identifier conflicts with a built-in name.

« 322. Redundant redeclaration of identifier name' as declignored.

323. Recursive scope inheritance of ‘name'.

324. Named nested template instantiations not supported. Processing as if no name was given to %template().

« 325. Nested kind not currently supported (name ignored).

326. Deprecated %extend name used - the kind name 'name ' should be used instead of the typedef name hame'.

327. Extern template ignored.

« 328. Value assigned to name not used due to limited parsing implementation.
329. Using declaration 'name' for inheriting constructors uses base 'name' which is not an immediate base of name '.

340. Lambda expressions and closures are not fully supported yet.

« 344. Unable to deduce decltype for ‘expr.

« 345. Unable to deduce auto return type for hame' (ignored).

346. Unable to deduce auto type for variable hame' (ignored).

350. operator new ignored.

351. operator delete ignored.

352. operator+ ignored.

353. operator- ignored.

354. operator* ignored.

355. operator/ ignored.

356. operator% ignored.

357. operator” ignored.

358. operator& ignored.

359. operator| ignored.

360. operator~ ignored.

361. operator! ignored.

362. operator= ignored.

363. operator< ignored.

364. operator> ignored.

365. operator+= ignored.

366. operator-= ignored.

367. operator*= ignored.

368. operator/= ignored.

369. operator%= ignored.

370. operator*= ignored.

371. operator&= ignored.

372. operator|= ignored.

373. operator<< ignored.

a

19.6 Commentary

187

374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.

SWIG-4.2 Documentation

operator>>ignored.
operator<<= ignored.
operator>>= ignored.
operator== ignored.
operator!= ignored.
operator<= ignored.
operator>= ignored.
operator&& ignored.
operator|| ignored.
operator++ ignored.
operator-- ignored.
operator, ignored.
operator-<* ignored.
operator-< ignored.
operator() ignored.
operator[] ignored.
operator+ ignored (unary).
operator- ignored (unary).
operator* ignored (unary).
operator& ignored (unary).
operator new[] ignored.
operator delete[] ignored.
operator*() ignored.
operator<=> delete[] ignored.

19.9.4 Types and typemaps (400-499)

401.
402.
403.
404.
405.
450.
451.
452,
453,
454,
455.
460.
46
462.
463.
464.
465.
46
467.

<}

469.
470.
47
472,
473.
474,
475.
476.
477.
490.

Nothing known about class 'name'. Ignored.

Base class 'name' is incomplete.

Class 'name' might be abstract.

Duplicate template instantiation of type' with name ' name' ignored, previous instantiation of type' with name 'name'.
Method with rvalue ref-qualifier name ignored.
Reserved

Setting const char * variable may leak memory.
Reserved

Can't apply (pattern). No typemaps are defined.
Setting a pointer/reference variable may leak memory
Setting a const wchar_t * variable may leak memory.
Unable to use type type as a function argument.

. Unable to use return type typein function name .

Unable to set variable of typetype.

Unable to read variable of type type.
Unsupported constant value.

Unable to handle type type.

. Unsupported variable type type.

Overloaded declaration not supported (incomplete type checking rule - no precedence level in typecheck typemap for 'type ')

. No 'throw' typemap defined for exception typetype

No or improper directorin typemap defined fortype
Thread/reentrant unsafe wrapping, consider returning by value instead.

. Unable to use return type type in director method

Overloaded method method with no explicit typecheck typemap for arg number of type ‘type'

Returning a reference, pointer or pointer wrapper in a director method is not recommended.

Method method usage of the optimal attribute ignored in the out typemap as the following cannot be used to generate optimal code: code
Multiple calls to method might be generated due to optimal attribute usage in the out typemap.

Initialization using std::initializer_list.

No directorthrows typemap defined fortype

Fragment 'name' not found.

19.9.5 Code generation (500-559)

50
502.
503.
504.
505.
506.
507.
508.
509.

« 510.

511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522.
523.
524.
52
526.

o

. Overloaded declaration ignored. decl. Previous declaration is decl.

Overloaded constructor ignored. decl. Previous declaration is decl.

Can't wrap ‘identifier unless renamed to a valid identifier.

Function name must have a return type. Ignored.

Variable length arguments discarded.

Can't wrap varargs with keyword arguments enabled.

Adding native function name not supported (ignored).

Declaration of ‘name' shadows declaration accessible via operator->(), previous declaration of'declaration'.
Overloaded method declaration effectively ignored, as it is shadowed by declaration.

Friend function ‘name' ignored.
Can't use keyword arguments with overloaded functions.

Overloaded method declaration ignored, using non-const method declaration instead.
Can't generate wrappers for unnamed struct/class.

Overloaded method declaration ignored, using declaration instead.

Portability warning: File file1 will be overwritten by file2 on case insensitive filesystems such as Windows' FAT32 and NTFS unless the class/module name is renamed.

%template() contains no name. Template method ignored: declaration

Base/Derived class 'classname1' of ' classnameZ2 is not similarly marked as a smart pointer.

lllegal destructor name name. Ignored.

Use of an illegal constructor name hame' in %extend is deprecated, the constructor name should be 'name'’.

Use of an illegal destructor name hame' in %extend is deprecated, the destructor name should be 'name'.

Experimental target language. Target language language specified by lang is an experimental language. Please read about SWIG experimental languages, htmllink.
Destructor declaration is final, name cannot be a director class.

Using declaration declaration, with name 'name ', is not actually using the method fromdeclaration, with name 'name', as the names are different.

19.9.6 Doxygen comments (560-599)

560:
561:
562:
563:
564:

Unknown Doxygen command: command.

Unexpected end of Doxygen comment encountered.

Expected Doxygen command: command

Doxygen HTML error for tag tag: error text.

Error parsing Doxygen command command: error text. Command ignored."

19.6 Commentary

188

SWIG-4.2 Documentation

19.9.7 Language module specific (700-899)

« 801. Wrong name (corrected to name'). (Ruby).

« 810. No jni typemap defined for type (Java).

« 811. No jtype typemap defined for type (Java).

« 812. No jstype typemap defined for type (Java).

« 813. Warning for classname, base baseclass ignored. Multiple inheritance is not supported in Java. (Java).

- 814.

« 815. No javafinalize typemap defined for fype (Java).

« 816. No javabody typemap defined fortype (Java).

« 817. No javaout typemap defined for type (Java).

« 818. No javain typemap defined for type (Java).

« 819. No javadirectorin typemap defined fortype (Java).

« 820. No javadirectorout typemap defined for type (Java).

. 821.

« 822. Covariant return types not supported in Java. Proxy method will return basetype (Java).

« 823. No javaconstruct typemap defined fortype (Java).

« 824. Missing JNI descriptor in directorin typemap defined fortype (Java).

« 825. "directorconnect" attribute missing in type "javaconstruct" typemap. (Java).

« 826. The nspace feature is used on 'type' without -package. The generated code may not compile as Java does not support types declared in a named package accessing types declared
in an unnamed package. (Java).

o

« 830. No ctype typemap defined fortype (C#).

« 831. No cstype typemap defined fortype (C#).

« 832. No cswtype typemap defined for type (C#).

« 833. Warning for classname, base baseclass ignored. Multiple inheritance is not supported in C#. (C#).
« 834.

« 835. No csfinalize typemap defined for type (C#).
« 836. No csbody typemap defined for type (C#).

« 837. No csout typemap defined for type (C#).

« 838. No csin typemap defined fortype (C#).

« 839.

o 840.

o 841.

o 842. Covariant return types not supported in C#. Proxy method will return basetype (C#).

« 843. No csconstruct typemap defined fortype (C#).

« 844. C# exception may not be thrown - no $excode or excode attribute in typemap typemap. (C#).

« 845. Unmanaged code contains a call to a SWIG_CSharpSetPendingException method and C# code does not handle pending exceptions via the canthrow attribute. (C#).

o

« 870. Warning for classname: Base baseclass ignored. Multiple inheritance is not supported in PHP. (Php).
« 871. Unrecognized pragma pragma. (Php).

19.9.8 User defined (900-999)

These numbers can be used by your own application.
19.10 History

The ability to control warning messages was first added to SWIG-1.3.12.

20 Working with Modules

Modules Introduction

Basics

The SWIG runtime code

External access to the runtime

A word of caution about static libraries
References

Reducing the wrapper file size

20.1 Modules Introduction

Each invocation of SWIG requires a module name to be specified. The module name is used to name the resulting target language extension module. Exactly what this means and what the
name is used for depends on the target language, for example the name can define a target language namespace or merely be a useful name for naming files or helper classes. Essentially, a
module comprises target language wrappers for a chosen collection of global variables/functions, structs/classes and other C/C++ types.

The module name can be supplied in one of two ways. The first is to specify it with the special $module directive. This directive must appear at the beginning of the interface file. The general
form of this directive is:

gmodule(optionl="valuel", option2="value2", ...) modulename

where the modulename is mandatory and the options add one or more optional additional features. Typically no options are specified, for example:

%module mymodule

The second way to specify the module name is with the -module command line option, for example -module mymodule. If the module name is supplied on the command line, it overrides
the name specified by the $module directive.

When first working with SWIG, users commonly start by creating a single module. That is, you might define a single SWIG interface that wraps some set of C/C++ code. You then compile all of
the generated wrapper code together and use it. For large applications, however, this approach is problematic---the size of the generated wrapper code can be rather large. Moreover, it is
probably easier to manage the target language interface when it is broken up into smaller pieces.

This chapter describes the problem of using SWIG in programs where you want to create a collection of modules. Each module in the collection is created via separate invocations of SWIG.

20.2 Basics

19.10 History

SWIG-4.2 Documentation

The basic usage case with multiple modules is when modules do not have cross-references (ie. when wrapping multiple independent C APIs). In that case, swig input files should just work out
of the box - you simply create multiple wrapper .cxx files, link them into your application, and insert/load each in the scripting language runtime as you would do for the single module case.

A bit more complex is the case in which modules need to share information. For example, when one module extends the class of another by deriving from it:

// File: base.h
class base {
public:

int foo();
}i

// File: base_module.i
g$module base_module

%{
#include "base.h"
%}

%include "base.h"

// File: derived_module.i
$module derived module

3{
#include "base.h"
%}

$import "base module.i"

%inline %{
class derived : public base {
public:
int bar();
}i
%}

To create the wrapper properly, modulederived_module needs to know about the base class and that its interface is covered in another module. The line $import "base module.i
lets SWIG know exactly that. Often the .h file is passed to $ import instead of the . i, which unfortunately doesn't work for all language modules. For example, Python requires the name of
module that the base class exists in so that the proxy classes can fully inherit the base class's methods. Typically you will get a warning when the module name is missing, eg:

derived module.i:8: Warning 401: Base class 'base' ignored - unknown module name for base. Either
import
the appropriate module interface file or specify the name of the module in the %import directive.

It is sometimes desirable to import the header file rather than the interface file and overcome the above warning. For example in the case of the imported interface being quite large, it may be
desirable to simplify matters and just import a small header file of dependent types. This can be done by specifying the optional module attribute in the $import directive. The
derived_module. i file shown above could be replaced with the following:

// File: derived module.i
$module derived module

3{
#include "base.h"
%}

$import (module="base_module") "base.h"

%inline %{
class derived : public base {
public:

int bar();

}i

Note that "base_module" is the module name and is the same as that specified in $module inbase_module. i as well as the $import inderived _module.i.

Another issue to beware of is that multiple dependent wrappers should not be linked/loaded in parallel from multiple threads as SWIG provides no locking - for more on that issue, read on.
20.3 The SWIG runtime code

Many of SWIG's target languages generate a set of functions commonly known as the "SWIG runtime." These functions are primarily related to the runtime type system which checks pointer
types and performs other tasks such as proper casting of pointer values in C++. As a general rule, the statically typed target languages, such as Java, use the language's built in static type
checking and have no need for a SWIG runtime. All the dynamically typed / interpreted languages rely on the SWIG runtime.

The runtime functions are private to each SWIG-generated module. That is, the runtime functions are declared with "static" linkage and are visible only to the wrapper functions defined in that
module. The only problem with this approach is that when more than one SWIG module is used in the same application, those modules often need to share type information. This is especially
true for C++ programs where SWIG must collect and share information about inheritance relationships that cross module boundaries.

To solve the problem of sharing information across modules, a pointer to the type information is stored in a global variable in the target language namespace. During module initialization, type
information is loaded into the global data structure of type information from all modules.

There are a few trade offs with this approach. This type information is global across all SWIG modules loaded, and can cause type conflicts between modules that were not designed to work
together. To solve this approach, the SWIG runtime code uses a define SWIG_TYPE_TABLE to provide a unique type table. This behavior can be enabled when compiling the generated
_wrap.cxx or _wrap.c file by adding -DSWIG_TYPE_TABLE=myprojectname to the command line argument.

Then, only modules compiled with SWIG_TYPE_TABLE set to myprojectname will share type information. So if your project has three modules, all three should be compiled with -
DSWIG_TYPE_TABLE=myprojectname, and then these three modules will share type information. But any other project's types will not interfere or clash with the types in your module.

Another issue relating to the global type table is thread safety. If two modules try and load at the same time, the type information can become corrupt. SWIG currently does not provide any
locking, and if you use threads, you must make sure that modules are loaded serially. Be careful if you use threads and the automatic module loading that some scripting languages provide.
One solution is to load all modules before spawning any threads, or use SWIG_TYPE_TABLE to separate type tables so they do not clash with each other.

Lastly, SWIG uses a #define SWIG_RUNTIME_VERSION, located in Lib/swigrun.swg and near the top of every generated module. This number gets incremented when the data structures
change, so that SWIG modules generated with different versions can peacefully coexist. So the type structures are separated by the (SWIG_TYPE_TABLE, SWIG_RUNTIME_VERSION) pair,
where by default SWIG_TYPE_TABLE is empty. Only modules compiled with the same pair will share type information.

20.3 The SWIG runtime code 190

SWIG-4.2 Documentation

20.4 External access to the runtime

As described in The run-time type checker, the functions SWIG_TypeQuery, SWIG_NewPointerObj, and others sometimes need to be called. Calling these functions from a typemap is
supported, since the typemap code is embedded into the _wrap. c file, which has those declarations available. If you need to call the SWIG run-time functions from another C file, there is one
header you need to include. To generate the header that needs to be included, SWIG can be run in a different mode via ~external-runtime to generate the run-time instead of the normal
mode of processing an input interface file. For example:

$ swig -python -external-runtime <filename>

The filename argument is optional and if it is not passed, then the default filename will be something like swigpyrun.h, depending on the language. This header file should be treated like any
of the other _wrap.c output files, and should be regenerated when the _wrap files are. After including this header, your code will be able to call SWIG_TypeQuery, SWIG_NewPointerObj,
SWIG_ConvertPtr and others. The exact argument parameters for these functions might differ between language modules; please check the language module chapters for more information.

Inside this header the functions are declared static and are included inline into the file, and thus the file does not need to be linked against any SWIG libraries or code (you might still need to
link against the language libraries like libpython-2.3). Data is shared between this file and the _wrap.c files through a global variable in the scripting language. It is also possible to copy this
header file along with the generated wrapper files into your own package, so that you can distribute a package that can be compiled without SWIG installed (this works because the header file
is self-contained, and does not need to link with anything).

This header will also use the -DSWIG_TYPE_TABLE described above, so when compiling any code which includes the generated header file should define the SWIG_TYPE_TABLE to be the
same as the module whose types you are trying to access.

20.5 A word of caution about static libraries

When working with multiple SWIG modules, you should take care not to use static libraries. For example, if you have a static library 1ibfoo.a and you link a collection of SWIG modules with
that library, each module will get its own private copy of the library code inserted into it. This is very often NOT what you want and it can lead to unexpected or bizarre program behavior. When
working with dynamically loadable modules, you should try to work exclusively with shared libraries.

20.6 References

Due to the complexity of working with shared libraries and multiple modules, it might be a good idea to consult an outside reference. John Levine's "Linkers and Loaders" is highly
recommended.

20.7 Reducing the wrapper file size
Using multiple modules with the 2 import directive is the most common approach to modularising large projects. In this way a number of different wrapper files can be generated, thereby
avoiding the generation of a single large wrapper file. There are a couple of alternative solutions for reducing the size of a wrapper file through the use of command line options and features.
-fcompact
This command line option will compact the size of the wrapper file without changing the code generated into the wrapper file. It simply removes blank lines and joins lines of code together. This
is useful for compilers that have a maximum file size that can be handled.

-fvirtual
This command line option will remove the generation of superfluous virtual method wrappers. Consider the following inheritance hierarchy:

struct Base {
virtual void method();

}i

struct Derived : Base {
virtual void method();

Yi

Normally wrappers are generated for both methods, whereas this command line option will suppress the generation of a wrapper for Derived: :method. Normal polymorphic behaviour
remains as Derived: :method will still be called should you have aDerived instance and call the wrapper for Base: :method.

%feature("compactdefaultargs")
This feature can reduce the number of wrapper methods when wrapping methods with default arguments. The section on default arguments discusses the feature and its limitations.

21 Using SWIG with ccache - ccache-swig(1) manpage

NAME

SYNOPSIS

DESCRIPTION

OPTIONS SUMMARY
OPTIONS

INSTALLATION

EXTRA OPTIONS
ENVIRONMENT VARIABLES
CACHE SIZE MANAGEMENT
CACHE COMPRESSION

HOW IT WORKS

USING CCACHE WITH DISTCC
SHARING A CACHE

HISTORY

DIFFERENCES FROM COMPILERCACHE
CREDITS

AUTHOR

21.1 NAME
ccache-swig - a fast compiler cache
21.2 SYNOPSIS

ccache-swig [OPTION]

ccache-swig <compiler> [COMPILER OPTIONS]

20.4 External access to the runtime

191

SWIG-4.2 Documentation

<compiler> [COMPILER OPTIONS]
21.3 DESCRIPTION

ccache-swig is a compiler cache. It speeds up re-compilation of C/C++/SWIG code by caching previous compiles and detecting when the same compile is being done again. ccache-swig is
ccache plus support for SWIG. ccache and ccache-swig are used interchangeably in this document.

21.4 OPTIONS SUMMARY

Here is a summary of the options to ccache-swig.

-s show statistics summary

-z zero statistics

-c run a cache cleanup

-C clear the cache completely

-F <n> set maximum files in cache

-M <n> set maximum size of cache (use G, M or K)
-h this help page

-V print version number

21.5 OPTIONS

These options only apply when you invoke ccache as "ccache-swig". When invoked as a compiler none of these options apply. In that case your normal compiler options apply and you should

refer to your compilers documentation.

-h
Print a options summary page
-s
Print the current statistics summary for the cache. The statistics are stored spread across the subdirectories of the cache. Using "ccache-swig -s" adds up the statistics across all
subdirectories and prints the totals.
-z
Zero the cache statistics.
-V
Print the ccache version number
-c
Clean the cache and re-calculate the cache file count and size totals. Normally the -c option should not be necessary as ccache keeps the cache below the specified limits at runtime and
keeps statistics up to date on each compile. This option is mostly useful if you manually modify the cache contents or believe that the cache size statistics may be inaccurate.
-C
Clear the entire cache, removing all cached files.
-F <maxfiles>

This sets the maximum number of files allowed in the cache. The value is stored inside the cache directory and applies to all future compiles. Due to the way the value is stored the
actual value used is always rounded down to the nearest multiple of 16.

-M <maxsize>

This sets the maximum cache size. You can specify a value in gigabytes, megabytes or kilobytes by appending a G, M or K to the value. The default is gigabytes. The actual value stored

is rounded down to the nearest multiple of 16 kilobytes.

21.6 INSTALLATION

There are two ways to use ccache. You can either prefix your compile commands with "ccache-swig" or you can create a symbolic link between ccache-swig and the names of your compilers.
The first method is most convenient if you just want to try out ccache or wish to use it for some specific projects. The second method is most useful for when you wish to use ccache for all your

compiles.
To install for usage by the first method just copy ccache-swig to somewhere in your path.
To install for the second method do something like this:
cp ccache-swig /usr/local/bin/
1n -s /usr/local/bin/ccache-swig /usr/local/bin/gcc
1n -s /usr/local/bin/ccache-swig /usr/local/bin/g++
In -s /usr/local/bin/ccache-swig /usr/local/bin/cc
1n -s /usr/local/bin/ccache-swig /usr/local/bin/swig
This will work as long as /usr/local/bin comes before the path to gcc (which is usually in /usr/bin). After installing you may wish to run "which gcc" to make sure that the correct link is being used.

Note! Do not use a hard link, use a symbolic link. A hardlink will cause "interesting" problems.

21.7 EXTRA OPTIONS

When run as a compiler front end ccache usually just takes the same command line options as the compiler you are using. The only exception to this is the option '--ccache-skip'. That option

can be used to tell ccache that the next option is definitely not a input filename, and should be passed along to the compiler as-is.

The reason this can be important is that ccache does need to parse the command line and determine what is an input filename and what is a compiler option, as it needs the input filename to
determine the name of the resulting object file (among other things). The heuristic ccache uses in this parse is that any string on the command line that exists as a file is treated as an input file

name (usually a C file). By using --ccache-skip you can force an option to not be treated as an input file name and instead be passed along to the compiler as a command line option.
21.8 ENVIRONMENT VARIABLES

ccache uses a number of environment variables to control operation. In most cases you won't need any of these as the defaults will be fine.

CCACHE_DIR
the CCACHE_DIR environment variable specifies where ccache will keep its cached compiler output. The default is "$HOME/.ccache".

CCACHE_TEMPDIR

the CCACHE_TEMPDIR environment variable specifies where ccache will put temporary files. The default is the same as CCACHE_DIR. Note that the CCACHE_TEMPDIR path must be

on the same filesystem as the CCACHE_DIR path, so that renames of files between the two directories can work.

CCACHE_LOGFILE
If you set the CCACHE_LOGFILE environment variable then ccache will write some log information on cache hits and misses in that file. This is useful for tracking down problems.

21.3 DESCRIPTION

192

SWIG-4.2 Documentation

CCACHE_VERBOSE
If you set the CCACHE_VERBOSE environment variable then ccache will display on stdout all the compiler invocations that it makes. This can useful for debugging unexpected
problems.

CCACHE_PATH
You can optionally set CCACHE_PATH to a colon separated path where ccache will look for the real compilers. If you don't do this then ccache will look for the first executable matching
the compiler name in the normal PATH that isn't a symbolic link to ccache itself.

CCACHE_CC
You can optionally set CCACHE_CC to force the name of the compiler to use. If you don't do this then ccache works it out from the command line.

CCACHE_PREFIX
This option adds a prefix to the command line that ccache runs when invoking the compiler. Also see the section below on using ccache with distcc.

CCACHE_DISABLE
If you set the environment variable CCACHE_DISABLE then ccache will just call the real compiler, bypassing the cache completely.

CCACHE_READONLY
the CCACHE_READONLY environment variable tells ccache to attempt to use existing cached object files, but not to try to add anything new to the cache. If you are using this because
your CCACHE_DIR is read-only, then you may find that you also need to set CCACHE_TEMPDIR as otherwise ccache will fail to create the temporary files.

CCACHE_CPP2
If you set the environment variable CCACHE_CPP2 then ccache will not use the optimisation of avoiding the 2nd call to the pre-processor by compiling the pre-processed output that was
used for finding the hash in the case of a cache miss. This is primarily a debugging option, although it is possible that some unusual compilers will have problems with the intermediate
filename extensions used in this optimisation, in which case this option could allow ccache to be used.

CCACHE_NOCOMPRESS
If you set the environment variable CCACHE_NOCOMPRESS then there is no compression used on files that go into the cache. However, this setting has no effect on how files are
retrieved from the cache, compressed results will still be usable.

CCACHE_NOSTATS
If you set the environment variable CCACHE_NOSTATS then ccache will not update the statistics files on each compile.

CCACHE_NLEVELS
The environment variable CCACHE_NLEVELS allows you to choose the number of levels of hash in the cache directory. The default is 2. The minimum is 1 and the maximum is 8.

CCACHE_HARDLINK
If you set the environment variable CCACHE_HARDLINK then ccache will attempt to use hard links from the cache directory when creating the compiler output rather than using a file
copy. Using hard links is faster, but can confuse programs like 'make' that rely on modification times. Hard links are never made for compressed cache files.

CCACHE_RECACHE
This forces ccache to not use any cached results, even if it finds them. New results are still cached, but existing cache entries are ignored.

CCACHE_UMASK
This sets the umask for ccache and all child processes (such as the compiler). This is mostly useful when you wish to share your cache with other users. Note that this also affects the file
permissions set on the object files created from your compilations.

CCACHE_HASHDIR
This tells ccache to hash the current working directory when calculating the hash that is used to distinguish two compiles. This prevents a problem with the storage of the current working
directory in the debug info of a object file, which can lead ccache to give a cached object file that has the working directory in the debug info set incorrectly. This option is off by default as
the incorrect setting of this debug info rarely causes problems. If you strike problems with gdb not using the correct directory then enable this option.

CCACHE_UNIFY
If you set the environment variable CCACHE_UNIFY then ccache will use the C/C++ unifier when hashing the pre-processor output if -g is not used in the compile. The unifier is slower
than a normal hash, so setting this environment variable loses a little bit of speed, but it means that ccache can take advantage of not recompiling when the changes to the source code
consist of reformatting only. Note that using CCACHE_UNIFY changes the hash, so cached compiles with CCACHE_UNIFY set cannot be used when CCACHE_UNIFY is not set and
vice versa. The reason the unifier is off by default is that it can give incorrect line number information in compiler warning messages.

CCACHE_EXTENSION
Normally ccache tries to automatically determine the extension to use for intermediate C pre-processor files based on the type of file being compiled. Unfortunately this sometimes
doesn't work, for example when using the aCC compiler on HP-UX. On systems like this you can use the CCACHE_EXTENSION option to override the default. On HP-UX set this
environment variable to "i" if you use the aCC compiler.

CCACHE_STRIPC
If you set the environment variable CCACHE_STRIPC then ccache will strip the -c option when invoking the preprocessor. This option is primarily for the Sun Workshop C++ compiler as
without this option an unwarranted warning is displayed: CC: Warning: "-E" redefines product from "object" to "source (stdout)" when -E and -c is used together.

CCACHE_SWIG
When using SWIG as the compiler and it does not have 'swig' in the executable name, then the CCACHE_SWIG environment variable needs to be set in order for ccache to work

correctly with SWIG. The use of CCACHE_CPP2 is also recommended for SWIG due to some preprocessor quirks, however, use of CCACHE_CPP2 can often be skipped -- check your
generated code with and without this option set. Known problems are using preprocessor directives within %inline blocks and the use of '#pragma SWIG'".

21.9 CACHE SIZE MANAGEMENT

By default ccache has a one gigabyte limit on the cache size and no maximum number of files. You can set a different limit using the "ccache -M" and "ccache -F" options, which set the size
and number of files limits.

When these limits are reached ccache will reduce the cache to 20% below the numbers you specified in order to avoid doing the cache clean operation too often.
21.10 CACHE COMPRESSION

By default on most platforms ccache will compress all files it puts into the cache using the zlib compression. While this involves a negligible performance slowdown, it significantly increases the
number of files that fit in the cache. You can turn off compression setting the CCACHE_NOCOMPRESS environment variable.

21.11 HOW IT WORKS

The basic idea is to detect when you are compiling exactly the same code a 2nd time and use the previously compiled output. You detect that it is the same code by forming a hash of:
« the pre-processor output from running the compiler with -E
« the command line options
« the real compilers size and modification time
« any stderr output generated by the compiler

These are hashed using md4 (a strong hash) and a cache file is formed based on that hash result. When the same compilation is done a second time ccache is able to supply the correct
compiler output (including all warnings etc) from the cache.

ccache has been carefully written to always produce exactly the same compiler output that you would get without the cache. If you ever discover a case where ccache changes the output of
your compiler then please let me know.

21.12 USING CCACHE WITH DISTCC

21.9 CACHE SIZE MANAGEMENT

SWIG-4.2 Documentation

distcc is a very useful program for distributing compilation across a range of compiler servers. It is often useful to combine distcc with ccache, so that compiles that are done are sped up by
distcc, but that ccache avoids the compile completely where possible.

To use distcc with ccache | recommend using the CCACHE_PREFIX option. You just need to set the environment variable CCACHE_PREFIX to 'distcc' and ccache will prefix the command
line used with the compiler with the command 'distcc'.

21.13 SHARING A CACHE

A group of developers can increase the cache hit rate by sharing a cache directory. The hard links however cause unwanted side effects, as all links to a cached file share the file's modification
timestamp. This results in false dependencies to be triggered by timestamp-based build systems whenever another user links to an existing file. Typically, users will see that their libraries and
binaries are relinked without reason. To share a cache without side effects, the following conditions need to be met:

Use the same CCACHE_DIR environment variable setting

Unset the CCACHE_HARDLINK environment variable

Make sure everyone sets the CCACHE_UMASK environment variable to 002, this ensures that cached files are accessible to everyone in the group.

Make sure that all users have write permission in the entire cache directory (and that you trust all users of the shared cache).

Make sure that the setgid bit is set on all directories in the cache. This tells the filesystem to inherit group ownership for new directories. The command "chmod g+s “find $CCACHE_DIR
-type d™" might be useful for this.

Set CCACHE_NOCOMPRESS for all users, if there are users with versions of ccache that do not support compression.

21.14 HISTORY

ccache was inspired by the compilercache shell script written by Erik Thiele and | would like to thank him for an excellent piece of work. See http:/www.erikyyy.de/compilercache/ for the Erik's
scripts. ccache-swig is a port of the original ccache with support added for use with SWIG.

| wrote ccache because | wanted to get a bit more speed out of a compiler cache and | wanted to remove some of the limitations of the shell-script version.
21.15 DIFFERENCES FROM COMPILERCACHE

The biggest differences between Erik's compilercache script and ccache are:

ccache is written in C, which makes it a bit faster (calling out to external programs is mostly what slowed down the scripts).
ccache can automatically find the real compiler

ccache keeps statistics on hits/misses

ccache can do automatic cache management

ccache can cache compiler output that includes warnings. In many cases this gives ccache a much higher cache hit rate.
ccache can handle a much wider ranger of compiler options

ccache avoids a double call to cpp on a cache miss

21.16 CREDITS

Thanks to the following people for their contributions to ccache
« Erik Thiele for the original compilercache script

« Luciano Rocha for the idea of compiling the pre-processor output to avoid a 2nd cpp pass
« Paul Russell for many suggestions and the debian packaging

21.17 AUTHOR

ccache was written by Andrew Tridgell https://www.samba.org/~tridge/. ccache was adapted to create ccache-swig for use with SWIG by William Fulton.
If you wish to report a problem or make a suggestion then please email the SWIG developers on the swig-devel mailing list, see https://www.swig.org/mail.html

ccache is released under the GNU General Public License version 2 or later. Please see the file COPYING for license details.

22 SWIG and Android

« Overview

« Android examples
o Examples introduction
o Simple C example
o C++ class example

o Other examples
e C++ STL

This chapter describes SWIG's support of Android.
22.1 Overview

The Android chapter is fairly short as support for Android is the same as for Java, where the Java Native Interface (JNI) is used to call from Android Java into C or C++ compiled code.
Everything in the Java chapter applies to generating code for access from Android Java code. This chapter contains a few Android specific notes and examples.

22.2 Android examples

22.2.1 Examples introduction

The examples require the Android SDK and Android NDK which can be installed as per instructions in the links. The Eclipse version is not required for these examples as just the command
line tools are used (shown for Linux as the host, but Windows will be very similar, if not identical in most places). Add the SDK tools and NDK tools to your path and create a directory
somewhere for your Android projects (adjust PATH as necessary to where you installed the tools):

$ mkdir AndroidApps
$ cd AndroidApps

The examples use a target id of 1. This might need changing depending on your setup. After installation of the Android SDK, the available target ids can be viewed by running the command
below. Please adjust the id to suit your target device.

$ android list targets

21.13 SHARING A CACHE

$ export PATH=$HOME/android/android-sdk-linux x86/tools:S$HOME/android/android-sdk-linux_x86/platform-tools:$HOME/android/android-ndk-16b: $PAT

http://www.erikyyy.de/compilercache/
https://www.samba.org/~tridge/
https://www.swig.org/mail.html
https://developer.android.com/sdk/
https://developer.android.com/ndk/

SWIG-4.2 Documentation

The following examples are shipped with SWIG under the Examples/android directory and include a Makefile to build and install each example.
22.2.2 Simple C example
This simple C example shows how to call a C function as well as read and modify a global variable. First we'll create and build a pure Java Android app. Afterwards the JNI code will be

generated by SWIG and built into the app. First create and build an app called SwigSimple in a subdirectory called simple using the commands below. Adjust the --target id as
mentioned earlier in the Examples introduction. Managing Projects from the Command Line on the Android developer's site is a useful reference for these steps.

$ android create project --target 1 --name SwigSimple --path ./simple --activity SwigSimple --package org.swig.simple
$ cd simple
$ ant debug

Modify src/org/swig/simple/SwigSimple. java from the default to:

package org.swig.simple;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

import android.widget.ScrollView;

import android.text.method.ScrollingMovementMethod;

public class SwigSimple extends Activity
{
TextView outputText = null;
Scrollview scroller = null;

/** Called when the activity is first created. */
@Ooverride
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

outputText = (TextView)findViewById(R.id.OutputText);
outputText.setText("Press 'Run' to start...\n");
outputText.setMovementMethod(new ScrollingMovementMethod());

scroller = (ScrollvView)findvViewById(R.id.Scroller);
}

public void onRunButtonClick(View view)
{
outputText.append("Started...\n");
nativeCall();
outputText.append("Finished!\n");

// Ensure scroll to end of text
scroller.post(new Runnable() {
public void run() {
scroller.fullScroll(ScrollView.FOCUS_DOWN) ;

})i
}

/** Calls into C/C++ code */
public void nativeCall()
{
// TODO
}

The above simply adds a Runbutton and scrollable text view as the GUI aspects of the program. The associated resources need to be created, modify res/layout/main.xml as follows:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

<Button
android:id="@+id/RunButton"
android:layout_width="wrap_ content"
android:layout_height="wrap_content"
android:text="Run..."
android:onClick="onRunButtonClick"
/>

<ScrollView
android:id="@+id/Scroller"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

<TextView
android:id="@+id/OutputText"
android:layout_width="wrap_ content"
android:layout height="wrap content"
/> B B

</Scrollview>

</LinearLayout>

Rebuild the project with your changes:

$ ant debug

21.13 SHARING A CACHE

http://developer.android.com/guide/developing/projects/projects-cmdline.html

SWIG-4.2 Documentation

Although there are no native function calls in the code, yet, you may want to check that this simple pure Java app runs before adding in the native calls. First, set up your Android device for
hardware debugging, see Using hardware devices on the Android developer's site. When complete your device should be listed in those attached, something like:

$ adb devices
List of devices attached
A32-6DBE0001-9FF80000-015D62C3-02018028 device

This means you are now ready to install the application...

$ adb install bin/SwigSimple-debug.apk
95 KB/s (4834 bytes in 0.049s)

pkg: /data/local/tmp/SwigSimple-debug.apk
Success

The newly installed 'SwigSimple' app will be amongst all your other applications on the home screen. Run the app and it will show a Runbutton text box below it. Press the Runbutton to see
the simple text output.

The application can be uninstalled like any other application and in fact must be uninstalled before installing an updated version. Uninstalling is quite easy too from your host computer:

$ adb uninstall org.swig.simple
Success

Now that you have a pure Java Android app working, let's add some JNI code generated from SWIG.

First create a jni subdirectory and then create some C source code in jni/example.c:

/* File : example.c */

/* A global variable */
double Foo = 3.0;

/* Compute the greatest common divisor of positive integers */
int ged(int x, int y) {
int g;
g =7Yi
while (x > 0) {
g = x;
X =y % X;
Yy = g;
}
return g;

}

Create a SWIG interface file for this C code, jni/example.i :

/* File : example.i */
gmodule example

%inline %{

extern int gcd(int x, int y);
extern double Foo;
%}

Invoke SWIG as follows:

$ swig -java -package org.swig.simple -outdir src/org/swig/simple -o jni/example wrap.c jni/example.i

SWIG generates the following files:

e src/org/swig/simple/exampleJNI.java
e src/org/swig/simple/example.java
¢ jni/example_wrap.c

Next we need to create a standard Android NDK build system file jni/Android.mk:

File: Android.mk
LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE
LOCAL_SRC_FILES

example
example wrap.c example.c

include $(BUILD_SHARED_ LIBRARY)

See the Android NDK documentation for more on the NDK build system and getting started with the NDK. A simple invocation of ndk-build will compile the .c files and generate a shared
object/system library. Output will be similar to:

$ ndk-build
Compile thumb
Compile thumb
SharedLibrary
Install

example <= example wrap.c

example <= example.c

libexample.so

libexample.so => libs/armeabi/libexample.so

Now that the C JNI layer has been built, we can write Java code to call into the this layer. Modify the nativecall method insrc/org/swig/simple/SwigSimple. java to call the JNI
code as follows and add the static constructor to load the system library containing the compiled JNI C code:

/** Calls into C/C++ code */

21.13 SHARING A CACHE

http://developer.android.com/guide/developing/device.html
https://developer.android.com/ndk/

SWIG-4.2 Documentation

public void nativeCall()

{
// call our gecd() function

int x = 42;

int y = 105;

int g = example.gcd(x, Y);

outputText.append("The greatest common divisor of " + x + " and " + y + " is " + g + "\n");

// Manipulate the Foo global variable

// Output its current value
double foo = example.getFoo();
outputText.append("Foo = " + foo + "\n");

// Change its value
example.setFoo(3.1415926);

// See if the change took effect
outputText.append("Foo = " + example.getFoo() + "\n");

// Restore value
example.setFoo(foo);

}

/** static constructor */
static {
System.loadLibrary("example");

}

Compile the Java code as usual, uninstall the old version of the app if still installed and re-install the new app:

$ ant debug
$ adb uninstall org.swig.simple
$ adb install bin/SwigSimple-debug.apk

Run the app again and this time you will see the output pictured below, showing the result of calls into the C code:

22.2.3 C++ class example

The steps for calling C++ code are almost identical to those in the previous C code example. All the steps required to compile and use a simple hierarchy of classes for shapes are shown in
this example.

First create an Android project called SwigClass in a subdirectory called class. The steps below create and build the JNI C++ app. Adjust the --target id as mentioned earlier in the
Examples introduction.

$ android create project --target 1 --name SwigClass --path ./class --activity SwigClass --package org.swig.classexample
$ cd class

Now create a jni subdirectory and then create a C++ header file jni/example.h which defines our hierarchy of shape classes:

/* File : example.h */

class Shape {
public:
Shape() {
nshapes++;
}
virtual ~Shape() {
nshapes--;

}
double x, y;
void move (double dx, double dy);
virtual double area() = 0;
virtual double perimeter() = 0;
static int nshapes;
}i
class Circle : public Shape {
private:
double radius;
public:

Circle(double r) : radius(r) { }
virtual double area();

21.13 SHARING A CACHE

SWIG-4.2 Documentation

virtual double perimeter();

}i

class Square : public Shape {
private:
double width;
public:
Square(double w) : width(w) { }
virtual double area();
virtual double perimeter();
}i

and create the implementation in the jni/example.cpp file:

/* File : example.cpp */

#include "example.h"
#define M_PI 3.14159265358979323846

/* Move the shape to a new location */
void Shape::move(double dx, double dy) {
x += dx;
y += dy;
}

int Shape::nshapes = 0;

double Circle::area() {
return M _PI*radius*radius;

}

double Circle::perimeter() {
return 2*M PI*radius;

}

double Square::area() {
return width*width;

}

double Square::perimeter() {
return 4*width;

}

Create a SWIG interface file for this C++ code in jni/example.1i :

/* File : example.i */
gmodule example

3{
#include "example.h"
%}

/* Let's just grab the original header file here */
%include "example.h"

Invoke SWIG as follows, note that the -c++ option is required for C++ code:

$ swig -c++ -java -package org.swig.classexample -outdir src/org/swig/classexample -o jni/example wrap.cpp jni/example.i

SWIG generates the following files:

src/org/swig/classexample/Square. java
src/org/swig/classexample/exampleJNI. java
src/org/swig/classexample/example. java
src/org/swig/classexample/Circle. java
src/org/swig/classexample/Shape. java
jni/example_wrap.cpp

Next we need to create an Android NDK build system file for compiling the C++ code jni/Android.mk. The -frtti compiler flag isn't strictly needed for this example, but is needed for any

code that uses C++ RTTI:

File: Android.mk
LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)
LOCAL_MODULE := example

LOCAL_SRC_FILES := example wrap.cpp example.cpp
LOCAL_CFLAGS := —frtti

include $(BUILD_SHARED LIBRARY)

Asi

mple invocation of ndk-build will compile the .cpp files and generate a shared object/system library. Output will be similar to:

$ ndk-build

Compile++ thumb : example <= example wrap.cpp

Compile++ thumb : example <= example.cpp

StaticLibrary : libstdc++.a

SharedLibrary : libexample.so

Install : libexample.so => libs/armeabi/libexample.so

Now that the C JNI layer has been built, we can write Java code to call into this layer. Modify src/org/swig/classexample/SwigClass. java from the default to:

21.13 SHARING A CACHE

198

SWIG-4.2 Documentation

package org.swig.classexample;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

import android.widget.ScrollView;

import android.text.method.ScrollingMovementMethod;

public class SwigClass extends Activity
{
TextView outputText = null;
ScrollvView scroller = null;

/** Called when the activity is first created. */
@Ooverride
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

outputText = (TextView)findViewById(R.id.OutputText);
outputText.setText("Press 'Run' to start...\n");
outputText.setMovementMethod(new ScrollingMovementMethod());

scroller = (ScrollView)findviewById(R.id.Scroller);
}

public void onRunButtonClick(View view)
{
outputText.append("Started...\n");
nativeCall();
outputText.append("Finished!\n");

// Ensure scroll to end of text
scroller.post(new Runnable() {
public void run() {
scroller.fullScroll(ScrollView.FOCUS_DOWN) ;
}
)i
}

/** Calls into C/C++ code */
public void nativeCall()

{

// ----- Object creation -----

outputText.append("Creating some objects:\n");
Circle ¢ = new Circle(10);

outputText.append(" Created circle " + c + "\n");
Square s = new Square(10);

outputText.append(" Created square " + s + "\n");
/] === Access a static member -----

outputText.append("\nA total of " + Shape.getNshapes() + " shapes were created\n"

// Notice how we can do this using functions specific to
// the 'Circle' class.

c.setX(20);

c.setY(30);

// Now use the same functions in the base class
Shape shape = s;

shape.setX(-10);

shape.setY(5);

outputText.append("\nHere is their current position:\n");

outputText.append(" Circle = (" + c.getX() + " " + c.get¥() + ")\n")
outputText.append(" Square = (" + s.getX() + " " + s.get¥() + ")\n");
/] ————= Call some methods -----

outputText.append("\nHere are some properties of the shapes:\n");
Shape[] shapes = {c, s};
for (int i=0; i<shapes.length; i++)

{
outputText.append(" " + shapes[i].toString() + "\n")
outputText.append(" area = " + shapes[i].area() + "\n");
outputText.append(" perimeter = " + shapes[i].perimeter() + "\n")
}

// Notice how the area() and perimeter() functions really
// invoke the appropriate virtual method on each object.

outputText.append("\nGuess I'll clean up now\n");

// Note: this invokes the virtual destructor

// You could leave this to the garbage collector
c.delete();

s.delete();

outputText.append(Shape.getNshapes() + " shapes remain\n");
outputText.append("Goodbye\n");

21.13 SHARING A CACHE

)i

199

SWIG-4.2 Documentation

/** static constructor */
static {
System.loadLibrary("example");

}

Note the static constructor and the interesting JNI code is in the nativeCall method. The remaining code deals with the GUI aspects which are identical to the previous C simple example.
Modify res/layout/main.xml to contain the xml for the 'Run’ button and scrollable text view:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

<Button
android:id="@+id/RunButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Run..."
android:onClick="onRunButtonClick"
/>

<Scrollview
android:id="@+id/Scroller"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

<TextView
android:id="@+id/OutputText"
android:layout_width="wrap_content"
android:layout_height="wrap content"
/> - -

</Scrollview>

</LinearLayout>

Compile the Java code as usual, uninstall the old version of the app if installed and re-install the new app:

$ ant debug
$ adb uninstall org.swig.classexample
$ adb install bin/SwigClass-debug.apk

Run the app to see the result of calling the C++ code from Java:

22.2.4 Other examples

The Examples/android directory contains further examples which can be run and installed in a similar manner to the previous two examples.

Note that the 'extend’ example is demonstrates the directors feature. Normally C++ exception handling and the STL is not available by default in the version of g++ shipped with Android, but
this example turns these features on as described in the next section.

22.3 C++ STL

Should the C++ Standard Template Library (STL) be required, an Application.mk file needs to be created in the same directory as the Android.mk directory containing information about
the STL to use. See the NDK documentation in the $SNDKROOT/docs folder especially CPLUSPLUS-SUPPORT.html. Below is an example of the Application.mk file to make the STLport
static library available for use:

File: Application.mk
APP_STL := gnustl_static

23 SWIG and C#

« Introduction
o SWIG 2 Compatibility
o Additional command line options
« Differences to the Java module
« Type mapping
o Primitive types
o Other types
o Void pointers
« C# Arrays

22.3 C++ STL

SWIG-4.2 Documentation

o The SWIG C arrays library
o Managed arrays using P/Invoke default array marshalling
o Managed arrays using pinning
« C# Exceptions
o C# exception example using "check" typemap
o C# exception example using %exception
o Ci# exception example using exception specifications
o Custom C# ApplicationException example
« C# Directors
o Directors example
o Directors implementation
o Director caveats
« Multiple modules
» C# named and optional arguments
« C# Typemap examples
Memory management when returning references to member variables
o Memory management for objects passed to the C++ layer
Date marshalling using the csin typemap and associated attributes
A date example demonstrating marshalling of C# properties
Date example demonstrating the 'pre' and 'post' typemap attributes for directors
Turning proxy classes into partial classes
Turning proxy classes into sealed classes
Extending proxy classes with additional C# code
Underlying type for enums

°

°

°

o

°

°

o

°

23.1 Introduction

The purpose of the C# module is to offer an automated way of accessing existing C/C++ code from .NET languages. The wrapper code implementation uses C# and the Platform Invoke
(PInvoke) interface to access natively compiled C/C++ code. The PInvoke interface has been chosen over Microsoft's Managed C++ interface as it is portable to both Microsoft Windows and
non-Microsoft platforms. PInvoke is part of the ECMA/ISO C# specification. It is also better suited for robust production environments due to the Managed C++ flaw called the Mixed DLL
Loading Problem. SWIG C# works equally well on non-Microsoft operating systems such as Linux, Solaris and Apple Mac using Mono.

SWIG 3 and later requires .NET 2.0 at a minimum. There are some minor exceptions, where the minimum required is .NET 4.0. This is when using the std: :complex and std::1ist STL
containers.

To get the most out of this chapter an understanding of interop is required. The Microsoft Developer Network (MSDN) has a good reference guide in a section titled "Interop Marshaling”.
Monodoc, available from the Mono project, has a very useful section titled Interop with native libraries.

23.1.1 SWIG 2 Compatibility

In order to minimize name collisions between names generated based on input to SWIG and names used in the generated code from the .NET framework, SWIG 3 fully qualifies the use of all
.NET types. Furthermore, SWIG 3 avoids using directives in generated code. This breaks backwards compatibility with typemaps, pragmas, etc written for use with SWIG 2 that assume the
presence of using System; or using System.Runtime.InteropServices; directives in the intermediate class imports, module imports, or proxy imports. SWIG 3 supports backwards
compatibility though the use of the SWIG2_CSHARP macro. If SWIG2_CSHARP is defined, SWIG 3 generates us ing directives in the intermediate class, module class, and proxy class code
similar to those generated by SWIG 2. This can be done without modifying any of the input code by passing the -DSWIG2_CSHARP commandline parameter when executing swig.

23.1.2 Additional command line options

The following table lists the additional commandline options available for the C# module. They can also be seen by using:

swig -csharp -help

C# specific options
-dllimport <dI> Override Dllimport attribute name to <dI>
-namespace <nm> Generate wrappers into C# namespace <nm>
Generate the low-level functional interface instead of proxy

-noproxy
classes

-oldvarnames Old intermediary method names for variable wrappers

-outfile <file> Write all C# into a single <file> located in the output directory

The -outfile option combines all the generated C# code into a single output file instead of creating multiple C# files. The default, when this option is not provided, is to generate separate .cs
files for the module class, intermediary class and each of the generated proxy and type wrapper classes. Note that the file extension (.cs) will not be automatically added and needs to be
provided. Due to possible compiler limits it is not advisable to use -outfile for large projects.

23.2 Differences to the Java module

The C# module is very similar to the Java module, so until some more complete documentation has been written, please use the Java documentation as a guide to using SWIG with C#. The
C# module has the same major SWIG features as the Java module. The rest of this section should be read in conjunction with the Java documentation as it lists the main differences. The most
notable differences to Java are the following:

When invoking SWIG use the ~csharp command line option instead of -java.

The -nopgcpp command line option does not exist.

The -package command line option does not exist.

The -namespace <name> commandline option will generate all code into the namespace specified by <name>. C# supports nested namespaces that are not lexically nested, so nested
namespaces will of course also work. For example: -namespace com.bloggs.widget , will generate code into C# namespaces:

namespace com.bloggs.widget {

}

Note that by default, the generated C# classes have no namespace and the module name is unrelated to namespaces. The module name is just like in Java and is merely used to name
some of the generated classes.

The nspace feature is also supported as described in this general section with a C# example. Unlike Java which requires the use of the -package option when using the nspace feature,
the -namespace option is not mandatory for C#.

The -dllimport <name> commandline option specifies the name of the DLL for the D11Import attribute for every PInvoke method. If this commandline option is not given, the
DllImport DLL name is the same as the module name. This option is useful for when one wants to invoke SWIG multiple times on different modules, yet compile all the resulting code
into a single DLL.

C/C++ variables are wrapped with C# properties and not JavaBean style getters and setters.

Global constants are generated into the module class. There is no constants interface.

There is no implementation for type unsafe enums - not deemed necessary.

The default enum wrapping approach is proper C# enums, not typesafe enums.

Note that %csconst(0) will be ignored when wrapping C/C++ enums with proper C# enums. This is because C# enum items must be initialised from a compile time constant. If an enum
item has an initialiser and the initialiser doesn't compile as C# code, then the %csconstvalue directive must be used as %csconst(0) will have no effect. If it was used, it would generate an
illegal runtime initialisation via a PInvoke call.

C# doesn't support the notion of throws clauses. Therefore there is no 'throws' typemap attribute support for adding exception classes to a throws clause. Likewise there is no need for an
equivalent to $javaexception. In fact, throwing C# exceptions works quite differently, see C# Exceptions below.

23.1 Introduction

https://msdn.microsoft.com/en-us/ie/aa290048(v=vs.94)
https://www.mono-project.com/Main_Page/
https://msdn.microsoft.com
https://www.mono-project.com/docs/advanced/pinvoke/

SWIG-4.2 Documentation

« The majority of the typemaps are in csharp.swg, not java.swg.

« Typemap equivalent names:

jni -> ctype

jtype -> imtype

jstype -> cstype

javain -> csin

javaout -> csout

javadirectorin -> csdirectorin

javadirectorout -> csdirectorout

javainterfaces -> csinterfaces and csinterfaces_derived
javabase -> csbase

javaclassmodifiers -> csclassmodifiers

javacode -> cscode

javaimports -> csimports

javabody -> csbody

javafinalize -> csfinalize

javadestruct -> csdisposing and csdispose
javadestruct_derived -> csdisposing_derived and csdispose_derived
javainterfacemodifiers -> csinterfacemodifiers
javainterfacecode -> csinterfacecode

Typemap macros:

SWIG_JAVABODY_ PROXY -> SWIG_CSBODY_PROXY
SWIG_JAVABODY_ TYPEWRAPPER -> SWIG_CSBODY_TYPEWRAPPER

Additional typemaps:

csvarin C# code property set typemap
csvarout C# code property get typemap
csattributes C# attributes for attaching to proxy classes/enums

Additional typemap attributes:

The "null" attribute in the "out" typemap can be specified to provide a value for $null to expand into for wrapped functions that return non-void. Normally the default value of 0 is used.
For example this is needed if you change the return type to void:

%typemap(ctype) Status "void"
%typemap(out, null="") Status { ... }

Feature equivalent names:

%javaconst -> %csconst
%javaconstvalue -> %csconstvalue
%javamethodmodifiers -> %csmethodmodifiers

Pragma equivalent names:

$pragma(java) -> %pragma(csharp)
jniclassbase -> imclassbase
jniclassclassmodifiers -> imclassclassmodifiers
jniclasscode -> imclasscode
jniclassimports -> imclassimports
jniclassinterfaces -> imclassinterfaces

« Special variable equivalent names:

$javaclassname -> S$csclassname
$&javaclassname -> $&csclassname
$*javaclassname -> $*csclassname
$javaclazzname -> $csclazzname
$javainput -> $csinput

$jnicall -> $imcall
$javainterfacename -> $csinterfacename
$&javainterfacename -> $&csinterfacename
$*javainterfacename -> $*csinterfacename

« Unlike the "javain" typemap, the "csin" typemap does not support the 'pgcpp’ attribute as the C# module does not have a premature garbage collection prevention parameter. The "csin”
typemap supports additional optional attributes called ‘cshin' and 'terminator'. The "csdirectorin" typemap supports additional optional attributes called 'terminator'. The 'cshin’ attribute
should contain the parameter type and name whenever a constructor helper function is generated due to the 'pre' or 'post' attributes. The 'terminator' attribute normally just contains a
closing brace for when the 'pre" attribute contains an opening brace, such as when a C# using or £ixed block is started. Note that 'pre', 'post', 'terminator' and 'cshin' attributes are not
used for marshalling the property set. Please see the Date marshalling example and Date marshalling of properties example for further understanding of these "csin" applicable attributes.
Please see the Date marshalling director example for further understanding of the "csdirectorin” attributes.

Support for asymmetric type marshalling. The ‘ctype’, 'imtype' and 'cstype' typemaps support an optional out attribute which is used for output types. If this typemap attribute is specified,
then the type specified in the attribute is used for output types and the type specified in the typemap itself is used for the input type. If this typemap attribute is not specified, then the type
used for both input and output is the type specified in the typemap. An example shows that char * could be marshalled in different ways,

%typemap (imtype, out="global::System.IntPtr") char * "string"
char * function(char x);

The output type is thus IntPtr and the input type is string. The resulting intermediary C# code is:

public static extern global::System.IntPtr function(string jargl);

23.1 Introduction

SWIG-4.2 Documentation

« Support for type attributes. The 'imtype’ and 'cstype' typemaps can have an optional inattributes and outattributes typemap attribute. The 'imtype’ typemap can also have an
optional directorinattributes and directoroutattributes typemap attribute which attaches to director delegates, an implementation detail of directors, see directors
implementation. Note that there are C# attributes and typemap attributes, don't get confused between the two!! The C# attributes specified in these typemap attributes are generated
wherever the type is used in the C# wrappers. These can be used to specify any C# attribute associated with a C/C++ type, but are more typically used for the C# Marshalas attribute.
For example:

$typemap (imtype,
inattributes="[global::System.Runtime.InteropServices.MarshalAs (UnmanagedType.LPStr)]",
outattributes="[return: global::System.Runtime.InteropServices.MarshalAs(UnmanagedType.LPStr)]") const char * "Stying"

const char * GetMsg() {}
void SetMsg(const char *msg) {}

The intermediary class will then have the marshalling as specified by everything in the 'imtype' typemap:

class examplePINVOKE {

[global::System.Runtime.InteropServices.DllImport("example", EntryPoint="CSharp_ GetMsg")]
[return: global::System.Runtime.InteropServices.MarshalAs(UnmanagedType.LPStr)]
public static extern String GetMsg();

[global::System.Runtime.InteropServices.DllImport("example", EntryPoint="CSharp_SetMsg")]
public static extern void SetMsg([global::System.Runtime.InteropServices.MarshalAs(UnmanagedType.LPStr)]String jargl);

Note that the D11Import attribute is always generated, irrespective of any additional attributes specified.

These attributes are associated with the C/C++ parameter type or return type, which is subtly different to the attribute features and typemaps covered next. Note that all these different C#
attributes can be combined so that a method has more than one attribute.

The directorinattributes and directoroutattributes typemap attribute are attached to the delegates in the director class, for example, the SwigDelegateBase_0

« Support for attaching C# attributes to wrapped methods, variables and enum values. This is done using the $csattributes feature, see %feature directives. Note that C# attributes are
attached to proxy classes and enums using the csattributes typemap. For example, imagine we have a custom attribute class, ThreadsafeAttribute, for labelling thread safety.
The following SWIG code shows how to attach this C# attribute to some methods and the class declaration itself:

$typemap (csattributes) AClass "[ThreadSafe]"
%csattributes AClass::AClass(double d) "[ThreadSafe(false)]"
%csattributes AClass::AMethod() "[ThreadSafe(true)]"

%inline %{
class AClass {
public:

AClass(double a) {}
void AMethod() {}
Yi
%}

will generate a C# proxy class:

[ThreadSafe]
public class AClass : global::System.IDisposable {

[ThreadSafe(false)]
public AClass(double a) ...

[ThreadSafe(true)]
public void AMethod() ...

If C# attributes need adding to the set or get part of C# properties, when wrapping C/C++ variables, they can be added using the ‘csvarin' and 'csvarout' typemaps respectively. Note
that the type used for the property is specified in the ‘cstype' typemap. If the 'out' attribute exists in this typemap, then the type used is from the 'out' attribute.

An example for attaching attributes to the enum and enum values is shown below.

$typemap (csattributes) Couleur "[global::System.ComponentModel.Description(\"Colours\")]"
%csattributes Rouge "[global::System.ComponentModel.Description(\"Red\")]"
%csattributes Vert "[global::System.ComponentModel.Description(\"Green\")]"
%inline %{
enum Couleur { Rouge, Orange, Vert };
%}

which will result in the following C# enum:

[global::System.ComponentModel.Description("Colours")]
public enum Couleur {
[global::System.ComponentModel.Description("Red")]
Rouge,
Orange,
[global::System.ComponentModel.Description("Green")]
Vert

« The intermediary classname has PINVOKE appended after the module name instead of JNI, for example modulenamePINVOKE .

« The $csmethodmodifiers feature can also be applied to variables as well as methods. In addition to the default public modifier that SWIG generates when $csmethodmodifiers
is not specified, the feature will also replace the virtual/new /override modifiers that SWIG thinks is appropriate. This feature is useful for some obscure cases where SWIG might
get the virtual/new/override modifiers incorrect, for example with multiple inheritance.

« The name of the intermediary class can be changed from its default, that is, the module name with PINVOKE appended after it. The module directive attribute imclassname is used to
achieve this:

23.1 Introduction

SWIG-4.2 Documentation

gmodule(imclassname="name") modulename

If name is the same asmodulename then the module class name gets changed from modulename to modulenameModule.

« The %$module directive supports the csbegin option for adding code to the start of every generated C# file. This is useful for adding common comments, using statements and/or
preprocessor statements into all generated .cs files. For example, C# 8 nullable reference types can be enabled via a C# preprocessor directive by adding #nullable enable into C#
files as follows:

gmodule (csbegin="#nullable enable\n") mymodule

It might be easier to use a macro for multiple lines of code, for example:

$define CSBEGIN_CODE

/* Copyright statement */
using System.Text;
#nullable enable

%enddef

$module (csbegin=CSBEGIN_CODE) mymodule

« There is no additional 'premature garbage collection prevention parameter' as the marshalling of the HandleRef£ object takes care of ensuring a reference to the proxy class is held until
the unmanaged call completed.

$dllimport
This is a C# only special variable that can be used in typemaps, pragmas, features etc. The special variable will get translated into the value specified by the ~d11import commandline option
if specified, otherwise it is equivalent to the $module special variable.

$imclassname
This special variable expands to the intermediary class name. For C# this is usually the same as '$modulePINVOKE' (‘$moduleJNI' for Java), unless the imclassname attribute is specified in
the %module directive.

$imfuncname
This special variable expands to the name of the function in the intermediary class that will be used in $imcall. Like, $imcall, this special variable is only expanded in the "csout", "
"csvarout" typemaps.

csvarin" and

The directory Examples/csharp has a number of simple examples. Visual Studio .NET 2003 solution and project files are available for compiling with the Microsoft .NET C# compiler on
Windows. This also works with newer versions of Visual Studio if you allow it to convert the solution to the latest version. If your SWIG installation went well on a Unix environment and your C#
compiler was detected, you should be able to type make in each example directory. After SWIG has run and both the C# and C/C++ compilers have finished building, the examples will be run,
by either running runme . exe or by running mono runme.exe (Mono C# compiler). Windows users can also get the examples working using a Cygwin or MinGW environment for automatic
configuration of the example makefiles. Any one of the C# compilers (Mono or Microsoft) can be detected from within a Cygwin or Mingw environment if installed in your path.

23.3 Type mapping

The marshalling of the types and typemaps used for marshalling across the managed/unmanaged layers are discussed in this section. The interested reader will find the implementation in the
csharp.swyq file.

23.3.1 Primitive types
Primitive types are marshalled between the unmanaged and managed layers as blittable types.
« The first column in the table below shows various C/C++ types that might be parsed by SWIG.
« The second column contains the default type provided by the ‘ctype’ typemap, that is, the type used for marshalling on the C side.

« The third column shows the default type provided by both the 'imtype’ and the 'cstype’ typemaps, that is, the equivalent type on the C# side.
« The fourth column shows the size or number of bytes of the 'imtype'/'cstype’, which may or may not match the size of the C/C++ type and is discussed next.

C/C++ type ctype imtype/cstype|[Size|
Sgglst bool & unsigned int bool 1
zgﬁ;t char & char char 1
zf: setdsicg:aerd char & signed char sbyte 1
?;ﬁ; short & short short 2
zgignuii%r:gé short & unsigned short ushort 2
?c:nst int & int int 4
lcoonr?st long & int int 4
zgignuiiilgrr:gd long & unsigned int uint 4
long long long long long 8

const long long &
unsigned long long

unsigned long

gonst unsigned long long long ulong s
float

const float & float float 4
double

const double & double double 8
size_t unsigned int uint 4

const size_t &

The size in bytes of the C type, 'ctype’, should match the C# type, 'imtype’ for blitting across the managed/unmanaged layers. They do match across the common 32-bit and 64-bit operating
systems, Unix, Windows and MacOS, except for the C long/unsigned long and size_t types. From the table above the default is to handle C long and size_t as a 32-bit (4 byte) type, so large
numbers could be truncated on some 64-bit operating systems. If SWIGWORDSIZE64 is defined the C long type is instead handled as a 64-bit (8 byte) type, as per the table below.

23.3 Type mapping

http://www.cygwin.com
https://osdn.net/projects/mingw/

SWIG-4.2 Documentation

C/C++ type ctype imtype/cstype|[Size!
long
const long & long long long 8

unsigned long
const unsigned long
&

unsigned long

long ulong 8

However, truncation may then occur when the C long type is actually 32-bits (4 bytes). It's best to avoid using C long for portability across different operating systems!

If you need to support long on a range of systems where the size of long varies, then steps must be taken before invoking SWIG to determine whether or not to define SWIGWORDSIZE64
when invoking SWIG.

In order to treat the C size_t type as a 64-bit (8 byte) type, apply the 64-bit typemaps as follows:

%$apply unsigned long long { size_t };
%apply const unsigned long long & { const size_t & };

The net effect then changes from the default shown earlier to:

C/C++ type ||ctype imtype/cstype|[Size!
size_t unsigned long
const size_t &|long

ulong 8

If you need to support size_t on a range of systems where the size of size_t varies, then steps must be taken before invoking SWIG to determine whether or not to apply the typemaps.
Conditionally applying the typemaps using a macro is easily done. For example define MY_SIZET_WORDSIZE64 to generate 64-bit (8 byte) handling using the following:

#if defined(MY_SIZET_ WORDSIZEG64)

%$apply unsigned long long { size_t };

%apply const unsigned long long & { const size_t & };
#endif

23.3.2 Other types

The table below shows the equivalent mappings for pointers and strings. Classes and structs are marshalled using a pointer to the instance of the object. Note the types in the 'imtype' and
‘cstype’ typemaps can be different.

« The 'imtype' type is used for marshalling across the managed and unmanaged boundary.

o The 'cstype' is the final C# proxy or intermediary class type.

« In the table below, the 'imtype’ type is used for marshalling from the managed to the unmanaged layer.
« The 'imtype out' type is used for marshalling from the unmanaged to the managed layer.

C/C++ type|ctype|imtype imtype out |cstype

char * w[atys . .

char [] char *|string string string

void * void *|System.Runtime.InteropServices.HandleRef||System.IntPtr| SWIGTYPE_p_void
23.3.3 Void pointers

By default SWIG treats void * as any other pointer and hence marshalls it as a type wrapper class called SWIGTYPE p_void, as shown in the table in the previous section. If you want to
marshall with the .NET system. IntPtr type instead, there is a simple set of named typemaps called void *VOID_INT_ PTR that can be used. The net effect is then:

C/C++ type ctype|imtype imtype out |cstype
void *VOID_INT_PTR||void *||System.IntPtr||System.IntPtr||System.IntPtr

This is achieved by applying them like any other named typemaps:

%apply void *VOID_INT_PTR { void * }
void * f(void *v);

23.4 C# Arrays

There are various ways to pass arrays from C# to C/C++. The default wrapping treats arrays as pointers and as such simple type wrapper classes are generated, eg SWIGTYPE_p_int when
wrapping the C type int [] orint *. This gives a rather restricted use of the underlying unmanaged code and the most practical way to use arrays is to enhance or customise with one of
the following three approaches; namely the SWIG C arrays library, P/Invoke default array marshalling or pinned arrays.

23.4.1 The SWIG C arrays library

The C arrays library keeps all the array memory in the unmanaged layer. The library is available to all language modules and is documented in the carrays.i library section. Please refer to this
section for details, but for convenience, the C# usage for the two examples outlined there is shown below.

For the sarray_functions example, the equivalent usage would be:

SWIGTYPE_p double a = example.new_doubleArray(10); // Create an array
for (int i=0; i<10; i++)

example.doubleArray setitem(a, i, 2*i); // Set a value
example.print_array(a); // Pass to C
example.delete_doubleArray(a); // Destroy array

and for the sarray_class example, the equivalent usage would be:

doubleArray c = new doubleArray(10); // Create double[10]
for (int i=0; i<10; i++)

c.setitem(i, 2*i); // Assign values
example.print_array(c.cast()); // Pass to C

23.4.2 Managed arrays using P/Invoke default array marshalling

In the P/Invoke default marshalling scheme, one needs to designate whether the invoked function will treat a managed array parameter as input, output, or both. When the function is invoked,

23.4 C# Arrays

SWIG-4.2 Documentation

the CLR allocates a separate chunk of memory as big as the given managed array, which is automatically released at the end of the function call. If the array parameter is marked as being
input, the content of the managed array is copied into this buffer when the call is made. Correspondingly, if the array parameter is marked as being output, the contents of the reserved buffer
are copied back into the managed array after the call returns. A pointer to this buffer is passed to the native function.

The reason for allocating a separate buffer is to leave the CLR free to relocate the managed array object during garbage collection. If the overhead caused by the copying is causing a
significant performance penalty, consider pinning the managed array and passing a direct reference as described in the next section.

For more information on the subject, see the Default Marshaling for Arrays article on MSDN.

The P/Invoke default marshalling is supported by the arrays_csharp. i library via the INPUT, OUTPUT and INOUT typemaps. Let's look at some example usage. Consider the following C
function:

void myArrayCopy(int *sourceArray, int *targetArray, int nitems);

We can now instruct SWIG to use the default marshalling typemaps by

%$include "arrays_csharp.i"

%apply int INPUT[] {int *sourceArray}
%apply int OUTPUT[] {int *targetArray}

As a result, we get the following method in the module class:

public static void myArrayCopy(int[] sourceArray, int[] targetArray, int nitems) {
examplePINVOKE.myArrayCopy (sourceArray, targetArray, nitems);
}

If we look beneath the surface at the corresponding intermediary class code, we see that SWIG has generated code that uses attributes (from the System.Runtime.InteropServices
namespace) to tell the CLR to use default marshalling for the arrays:

[global::System.Runtime.InteropServices.DllImport("example", EntryPoint="CSharp myArrayCopy")]
public static extern void myArrayCopy([global::System.Runtime.InteropServices.In, global::System.Runtime.InteropServices.MarshalAs(UnmanagedT
[global::System.Runtime.InteropServices.Out, global::System.Runtime.InteropServices.MarshalAs (Unmanaged
int jarg3);

As an example of passing an inout array (i.e. the target function will both read from and write to the array), consider this C function that swaps a given number of elements in the given arrays:

void myArraySwap(int *arrayl, int *array2, int nitems);

Now, we can instruct SWIG to wrap this by

%$include "arrays_csharp.i"

%apply int INOUT[] {int *arrayl}
%apply int INOUT[] {int *array2}

This results in the module class method

public static void myArraySwap(int[] arrayl, int[] array2, int nitems) {
examplePINVOKE.myArraySwap(arrayl, array2, nitems);
}

and intermediary class method

[global::System.Runtime.InteropServices.DllImport("example", EntryPoint="CSharp_myArraySwap")]
public static extern void myArraySwap([global::System.Runtime.InteropServices.In, global::System.Runtime.InteropServices.Out, global::Syste
[global::System.Runtime.InteropServices.In, global::System.Runtime.InteropServices.Out, global::S
int jarg3);

23.4.3 Managed arrays using pinning

It is also possible to pin a given array in memory (i.e. fix its location in memory), obtain a direct pointer to it, and then pass this pointer to the wrapped C/C++ function. This approach involves
no copying, but it makes the work of the garbage collector harder as the managed array object can not be relocated before the fix on the array is released. You should avoid fixing arrays in
memory in cases where the control may re-enter the managed side via a callback and/or another thread may produce enough garbage to trigger garbage collection.

For more information, see the fixed statement in the C# language reference.

Now let's look at an example using pinning, thus avoiding the CLR making copies of the arrays passed as parameters. The arrays_csharp. i library file again provides the required support
via the FIXED typemaps. Let's use the same function from the previous section:

void myArrayCopy(int *sourceArray, int *targetArray, int nitems);

We now need to declare the module class method unsafe, as we are using pointers:

%csmethodmodifiers myArrayCopy "public unsafe";

Apply the appropriate typemaps to the array parameters:

%$include "arrays_csharp.i"

%apply int FIXED[] {int *sourceArray}
%apply int FIXED[] {int *targetArray}

23.4 C# Arrays 206

https://docs.microsoft.com/en-us/dotnet/framework/interop/default-marshaling-for-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/fixed-statement

SWIG-4.2 Documentation

Notice that there is no need for separate in, out or inout typemaps as is the case when using P/Invoke default marshalling.

As a result, we get the following method in the module class:

public unsafe static void myArrayCopy(int[] sourceArray, int[] targetArray, int nitems) {
fixed (int *swig_ptrTo_sourceArray = sourceArray) {
fixed (int *swig_ptrTo_targetArray = targetArray) {

{
examplePINVOKE.myArrayCopy((global::System.IntPtr)swig_ptrTo_sourceArray, (global::System.IntPtr)swig_ptrTo_targetArray,
nitems);
}
}
}

On the method signature level the only difference to the version using P/Invoke default marshalling is the "unsafe" quantifier, which is required because we are handling pointers.

Also the intermediary class method looks a little different from the default marshalling example - the method is expecting an IntPtr as the parameter type.

[global::System.Runtime.InteropServices.DllImport("example", EntryPoint="CSharp_myArrayCopy")]
public static extern void myArrayCopy(global::System.IntPtr jargl, global::System.IntPtr jarg2, int jarg3);

23.5 Ci# Exceptions

It is possible to throw a C# Exception from C/C++ code. SWIG already provides the framework for throwing C# exceptions if it is able to detect that a C++ exception could be thrown.
Automatically detecting that a C++ exception could be thrown is only possible when a C++ exception specification is used, see Exception specifications. The Exception handling with
%exception section details the 2exception feature. Customised code for handling exceptions with or without a C++ exception specification is possible and the details follow. However anyone
wishing to do this should be familiar with the contents of the sections referred to above.

Unfortunately a C# exception cannot simply be thrown from unmanaged code for a variety of reasons. Most notably being that throwing a C# exception results in exceptions being thrown
across the C Plnvoke interface and C does not understand exceptions. The design revolves around a C# exception being constructed and stored as a pending exception, to be thrown only
when the unmanaged code has completed. Implementing this is a tad involved and there are thus some unusual typemap constructs. Some practical examples follow and they should be read
in conjunction with the rest of this section.

First some details about the design that must be followed. Each typemap or feature that generates unmanaged code supports an attribute called canthrow. This is simply a flag which when
set indicates that the code in the typemap/feature has code which might want to throw a C# exception. The code in the typemap/feature can then raise a C# exception by calling one of the C
functions, SWIG_CSharpSetPendingException() Or SWIG_CSharpSetPendingExceptionArgument (). When called, the function makes a callback into the managed world via a
delegate. The callback creates and stores an exception ready for throwing when the unmanaged code has finished. The typemap/feature unmanaged code is then expected to force an
immediate return from the unmanaged wrapper function, so that the pending managed exception can then be thrown. The support code has been carefully designed to be efficient as well as
thread-safe. However to achieve the goal of efficiency requires some optional code generation in the managed code typemaps. Code to check for pending exceptions is generated if and only
if the unmanaged code has code to set a pending exception, that is if the canthrow attribute is set. The optional managed code is generated using the excode typemap attribute and
$excode special variable in the relevant managed code typemaps. Simply, if any relevant unmanaged code has the canthrow attribute set, then any occurrences of sexcode is replaced with
the code in the excode attribute. If the canthrow attribute is not set, then any occurrences of sexcode are replaced with nothing.

The prototypes for the SWIG_CSharpSetPendingException() and SWIG_CSharpSetPendingExceptionArgument () functions are

static void SWIG_CSharpSetPendingException(SWIG_CSharpExceptionCodes code,
const char *msg);

static void SWIG_CSharpSetPendingExceptionArgument (SWIG_CSharpExceptionArgumentCodes code,
const char *msg,
const char *param name);

The first parameter defines which .NET exceptions can be thrown:

typedef enum {
SWIG_CSharpApplicationException,
SWIG_CSharpArithmeticException,
SWIG_CsSharpDivideByZeroException,
SWIG_CSharpIndexOutOfRangeException,
SWIG_CSharpInvalidCastException,
SWIG_CSharpInvalidOperationException,
SWIG_CSharpIOException,
SWIG_CSharpNullReferenceException,
SWIG_CSharpOutOfMemoryException,
SWIG_CSharpOverflowException,
SWIG_CSharpSystemException

} SWIG_CSharpExceptionCodes;

typedef enum {
SWIG_CSharpArgumentException,
SWIG_CSharpArgumentNullException,
SWIG_CSharpArgumentOutOfRangeException,
} SWIG_CSharpExceptionArgumentCodes;

where, for example, SWIG_CSharpApplicationException corresponds to the .NET exception, ApplicationException. The msg and param_name parameters contain the C#
exception message and parameter name associated with the exception.

The %exception feature in C# has thecanthrow attribute set. The $csnothrowexception feature is like $exception, but it does not have thecanthrow attribute set so should only be
used when a C# exception is not created.

23.5.1 C# exception example using "check" typemap

Let's say we have the following simple C++ method:

void positivesonly(int number);

and we want to check that the input number is always positive and if not throw a C# ArgumentOutOfRangeException. The "check" typemap is designed for checking input parameters.
Below you will see the canthrow attribute is set because the code contains a call to SWIG_CSharpSetPendingExceptionArgument (). The full example follows:

$module example

23.5 C# Exceptions

207

SWIG-4.2 Documentation

%typemap (check, canthrow=1) int number %{

if ($1 < 0) {
SWIG_CSharpSetPendingExceptionArgument (SWIG_CSharpArgumentOutOfRangeException,

"only positive numbers accepted", "number");

return $null;

}

// SWIGEXCODE is a macro used by many other csout typemaps

%define SWIGEXCODE

"\n if ($modulePINVOKE.SWIGPendingException.Pending)"
"\n throw $modulePINVOKE.SWIGPendingException.Retrieve();"
%enddef

%typemap (csout, excode=SWIGEXCODE) void {
$imcall; Sexcode
}
%}

%inline %{

void positivesonly(int number) {

}

%}

When the following C# code is executed:

public class runme {
static void Main() {
example.positivesonly(-1);

}

The exception is thrown:

Unhandled Exception: System.ArgumentOutOfRangeException: only positive numbers accepted
Parameter name: number

in <0x00034> example:positivesonly (int)

in <0x0000c> runme:Main ()

Now let's analyse the generated code to gain a fuller understanding of the typemaps. The generated unmanaged C++ code is:

SWIGEXPORT void SWIGSTDCALL CSharp positivesonly(int jargl) {
int argl ;

argl = (int)jargl;

if (argl < 0) {
SWIG_CSharpSetPendingExceptionArgument (SWIG_CSharpArgumentOutOfRangeException,
"only positive numbers accepted", "number");
return ;

i

positivesonly(argl);

This largely comes from the "check" typemap. The managed code in the module class is:

public class example {
public static void positivesonly(int number) {
examplePINVOKE.positivesonly (number);
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();

This comes largely from the "csout" typemap.

The "csout" typemap is the same as the default void "csout" typemap so is not strictly necessary for the example. However, it is shown to demonstrate what managed output code typemaps
should contain, that is, a $excode special variable and an excode attribute. Also note that $excode is expanded into the code held in theexcode attribute. The $imcall as always expands
into examplePINVOKE.positivesonly (number). The exception support code in the intermediary class, examplePINVOKE, is not shown, but is contained within the inner classes,
SWIGPendingException and SWIGExceptionHelper and is always generated. These classes can be seen in any of the generated wrappers. However, all that is required of a user is as
demonstrated in the "csin" typemap above. That is, is to check SWIGPendingException.Pending and to throw the exception returned by SWIGPendingException.Retrieve().

If the "check" typemap did not exist, then the following module class would instead be generated:

public class example {
public static void positivesonly(int number) {
examplePINVOKE.positivesonly (number);
}

Here we see the pending exception checking code is omitted. In fact, the code above would be generated if the canthrow attribute was not in the "check" typemap, such as:

%typemap(check) int number %{
if ($1 < 0) {
SWIG_CSharpSetPendingExceptionArgument (SWIG_CSharpArgumentOutOfRangeException,
"only positive numbers accepted", "number");
return $null;
}
%}

23.5 C# Exceptions

SWIG-4.2 Documentation

Note that if SWIG detects you have used SWIG_CSharpSetPendingException() or SWIG_CSharpSetPendingExceptionArgument () without setting the canthrow attribute you will
get a warning message similar to

example.i:21: Warning 845: Unmanaged code contains a call to a SWIG_CSharpSetPendingException
method and C# code does not handle pending exceptions via the canthrow attribute.

Actually it will issue this warning for any function beginning with SWIG_CSharpSetPendingException.
23.5.2 C# exception example using %exception

Let's consider a similar, but more common example that throws a C++ exception from within a wrapped function. We can use $exception as mentioned in Exception handling with
Yeexception.

%exception negativesonly(int value) %{

try {

saction

catch (std::out_of_range e) {
SWIG_CSharpSetPendingException(SWIG_CSharpApplicationException, e.what());
return $null;

-~

}
%)

%inline %{
#include <stdexcept>
void negativesonly(int value) {
if (value >= 0)
throw std::out_of_range("number should be negative");
}
%}

The generated unmanaged code this time catches the C++ exception and converts it into a C# ApplicationException.

SWIGEXPORT void SWIGSTDCALL CSharp negativesonly(int jargl) {
int argl ;

argl = (int)jargl;

try {
negativesonly(argl);

} catch (std::out_of range e) {
SWIG_CSharpSetPendingException(SWIG_CSharpApplicationException, e.what());
return ;

The managed code generated does check for the pending exception as mentioned earlier as the C# version of $exception has the canthrow attribute set by default:

public static void negativesonly(int value) {
examplePINVOKE.negativesonly(value);
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();

23.5.3 C# exception example using exception specifications

When C++ exception specifications are used, SWIG is able to detect that the method might throw an exception. By default SWIG will automatically generate code to catch the exception and
convert it into a managed ApplicationException, as defined by the default "throws" typemaps. The following example has a user supplied "throws" typemap which is used whenever an
exception specification contains a std: :out_of_range, such as the evensonly method below.

$typemap(throws, canthrow=1) std::out_of_range {
SWIG_CSharpSetPendingExceptionArgument (SWIG_CSharpArgumentException, $1l.what(), NULL);
return $null;

}

%inline %{
#include <stdexcept>
void evensonly(int input) throw (std::out_of_ range) {
if (input%2 != 0)
throw std::out_of_ range("number is not even");
}
%}

Note that the type for the throws typemap is the type in the exception specification. SWIG generates a try catch block with the throws typemap code in the catch handler.

SWIGEXPORT void SWIGSTDCALL CSharp_ evensonly(int jargl) {
int argl ;

argl = (int)jargl;
try {
evensonly(argl);

}

catch(std::out_of_range & e) {

SWIG_CSharpSetPendingExceptionArgument (SWIG_CSharpArgumentException, (&_e)->what(), NULL);
return ;

23.5 C# Exceptions

SWIG-4.2 Documentation

Multiple catch handlers are generated should there be more than one exception specifications declared.
23.5.4 Custom C# ApplicationException example

This example involves a user defined exception. The conventional .NET exception handling approach is to create a custom ApplicationException and throw it in your application. The
goal in this example is to convert the STL std: :out_of_range exception into one of these custom .NET exceptions.

The default exception handling is quite easy to use as the SWIG_CSharpSetPendingException() and SWIG_CSharpSetPendingExceptionArgument () methods are provided by
SWIG. However, for a custom C# exception, the boiler plate code that supports these functions needs replicating. In essence this consists of some C/C++ code and C# code. The C/C++ code
can be generated into the wrapper file using the $insert (runtime) directive and the C# code can be generated into the intermediary class using the imclasscode pragma as follows:

%insert(runtime) %{
// Code to handle throwing of C# CustomApplicationException from C/C++ code.
// The equivalent delegate to the callback, CSharpExceptionCallback t, is CustomExceptionDelegate
// and the equivalent customExceptionCallback instance is customDelegate
typedef void (SWIGSTDCALL* CSharpExceptionCallback_t)(const char *);
CsharpExceptionCallback_t customExceptionCallback = NULL;

extern "C" SWIGEXPORT

void SWIGSTDCALL CustomExceptionRegisterCallback(CSharpExceptionCallback t customCallback) {
customExceptionCallback = customCallback;

}

// Note that SWIG detects any method calls named starting with
// SWIG_CSharpSetPendingException for warning 845
static void SWIG_CSharpSetPendingExceptionCustom(const char *msg) {
customExceptionCallback(msg);
}
%}

%pragma(csharp) imclasscode=%{
class CustomExceptionHelper {
// C# delegate for the C/C++ customExceptionCallback
public delegate void CustomExceptionDelegate(string message);
static CustomExceptionDelegate customDelegate =
new CustomExceptionDelegate(SetPendingCustomException);

[global::System.Runtime.InteropServices.DllImport("$dllimport"”, EntryPoint="CustomExceptionRegisterCallback")]
public static extern
void CustomExceptionRegisterCallback(CustomExceptionDelegate customCallback);

static void SetPendingCustomException(string message) {
SWIGPendingException.Set(new CustomApplicationException(message));

}

static CustomExceptionHelper() {
CustomExceptionRegisterCallback(customDelegate);
}
}

static CustomExceptionHelper exceptionHelper = new CustomExceptionHelper();
%}

The method stored in the C# delegate instance, custombDelegate is what gets called by the C/C++ callback. However, the equivalent to the C# delegate, that is the C/C++ callback, needs to
be assigned before any unmanaged code is executed. This is achieved by putting the initialisation code in the intermediary class. Recall that the intermediary class contains all the PInvoke
methods, so the static variables in the intermediary class will be initialised before any of the PInvoke methods in this class are called. The exceptionHelper static variable ensures the
C/C++ callback is initialised with the value in customDelegate by calling the CustomExceptionRegistercCallback method in the CustomExceptionHelper static constructor. Once
this has been done, unmanaged code can make callbacks into the managed world as customExceptionCallback will be initialised with a valid callback/delegate. Any calls to
SWIG_CSharpSetPendingExceptionCustom() will make the callback to create the pending exception in the same way that SWIG_CSharpSetPendingException() and
SWIG_CSharpSetPendingExceptionArgument () does. In fact the method has been similarly named so that SWIG can issue the warning about missing canthrow attributes as
discussed earlier. It is an invaluable warning as it is easy to forget the canthrow attribute when writing typemaps/features.

The sWIGPendingException helper class is not shown, but is generated as an inner class into the intermediary class. It stores the pending exception in Thread Local Storage so that the
exception handling mechanism is thread safe.

The boiler plate code above must be used in addition to a handcrafted CustomApplicationException:

// Custom C# Exception
class CustomApplicationException : global::System.ApplicationException {
public CustomApplicationException(string message)
: base(message) {

}

and the SWIG interface code:

$typemap(throws, canthrow=1) std::out_of_range {
SWIG_CSharpSetPendingExceptionCustom($1l.what());
return $null;

}

%inline %{
void oddsonly(int input) throw (std::out_of_range) {
if (input%2 != 1)
throw std::out_of_ range("number is not odd");
}
%}

The "throws" typemap now simply calls our new SWIG_CSharpSetPendingExceptionCustom() function so that the exception can be caught, as such:

try {
example.oddsonly(2);
} catch (CustomApplicationException e) {

}

23.5 C# Exceptions

SWIG-4.2 Documentation

23.6 C# Directors

The SWIG directors feature adds extra code to the generated C# proxy classes that enable these classes to be used in cross-language polymorphism. Essentially, it enables unmanaged C++
code to call back into managed code for virtual methods so that a C# class can derive from a wrapped C++ class.

The following sections provide information on the C# director implementation and contain most of the information required to use the C# directors. However, the Java directors section should
also be read in order to gain more insight into directors.

23.6.1 Directors example

Imagine we are wrapping a C++ base class, Base, from which we would like to inherit in C#. Such a class is shown below as well as another class, caller, which calls the virtual method
UIntMethod from pure unmanaged C++ code.

// file: example.h
class Base {
public:

virtual ~Base() {}

virtual unsigned int UIntMethod(unsigned int x) {
std::cout << "Base - UIntMethod(" << x << ")" << std::endl;
return x;
}
virtual void BaseBoolMethod(const Base &b, bool flag) {}
}i

class Caller {
public:
Caller(): m_base(0) {}
~Caller() { delBase(); }
void set(Base *b) { delBase(); m_base = b; }
void reset() { m _base = 0; }
unsigned int UIntMethodCall(unsigned int x) { return m base->UIntMethod(x); }

private:

Base *m_base;

void delBase() { delete m base; m base = 0; }
}i

The director feature is turned off by default and the following simple interface file shows how directors are enabled for the class Base.

/* File : example.i */
gmodule(directors="1") example
3{

#include "example.h"

%}

%feature("director") Base;

%include "example.h"

The following is a C# class inheriting from Base:

public class CSharpDerived : Base
{
public override uint UIntMethod(uint x)
{
global::System.Console.WriteLine("CSharpDerived - UIntMethod({0})", x);
return x;
}
}

The caller class can demonstrate the UIntMethod method being called from unmanaged code using the following C# code:

public class runme
{
static void Main()

{

Caller myCaller = new Caller();

// Test pure C++ class
using (Base myBase = new Base())
{
makeCalls(myCaller, myBase);
}

// Test director / C# derived class
using (Base myBase = new CSharpDerived())
{
makeCalls(myCaller, myBase);
}
}

static void makeCalls(Caller myCaller, Base myBase)
{
myCaller.set(myBase);
myCaller.UIntMethodCall(123);
myCaller.reset();

¥

If the above is run, the output is then:

Base - UIntMethod(123)

23.6 C# Directors

SWIG-4.2 Documentation

CSharpDerived - UIntMethod(123)

23.6.2 Directors implementation

The previous section demonstrated a simple example where the virtual UIntMethod method was called from C++ code, even when the overridden method is implemented in C#. The
intention of this section is to gain an insight into how the director feature works. It shows the generated code for the two virtual methods, UIntMethod and BaseBoolMethod, when the
director feature is enabled for the Base class.

Below is the generated C# Base director class.

public class Base : global::System.IDisposable {
private global::System.Runtime.InteropServices.HandleRef swigCPtr;
protected bool swigCMemOwn;

internal Base(global::System.IntPtr cPtr, bool cMemoryOwn) {
swigCMemOwn = cMemoryOwn;
swigCPtr = new global::System.Runtime.InteropServices.HandleRef(this, cPtr);

}
internal static global::System.Runtime.InteropServices.HandleRef getCPtr(Base obj) {
return (obj == null) ? new global::System.Runtime.InteropServices.HandleRef(null, global::System.IntPtr.Zero) : obj.swigCPtr;
}
~Base() {
Dispose();
}

public virtual void Dispose() {
lock(this) {
if (swigCPtr.Handle != global::System.IntPtr.Zero && swigCMemOwn) {
swigCMemOwn = false;
examplePINVOKE.delete_Base(swigCPtr);
}
swigCPtr = new global::System.Runtime.InteropServices.HandleRef(null, global::System.IntPtr.Zero);
global::System.GC.SuppressFinalize(this);

}

public virtual uint UIntMethod(uint x) {
uint ret = examplePINVOKE.Base_ UIntMethod(swigCPtr, Xx);
return ret;

}

public virtual void BaseBoolMethod(Base b, bool flag) {
examplePINVOKE.Base_BaseBoolMethod(swigCPtr, Base.getCPtr(b), flag);
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();
}

public Base() : this(examplePINVOKE.new_Base(), true) {
SwigDirectorConnect();

}

private void SwigDirectorConnect() {
if (SwigDerivedClassHasMethod("UIntMethod", swigMethodTypes0))
swigDelegate0 = new SwigDelegateBase 0(SwigDirectorMethodUIntMethod);
if (SwigDerivedClassHasMethod("BaseBoolMethod", swigMethodTypesl))
swigDelegatel = new SwigDelegateBase 1(SwigDirectorMethodBaseBoolMethod);
examplePINVOKE.Base_director_connect(swigCPtr, swigDelegate0, swigDelegatel);

}

private bool SwigDerivedClassHasMethod(string methodName, global::System.global::System.Type[] methodTypes) {
System.Reflection.MethodInfo methodInfo = this.GetType().GetMethod(methodName, methodTypes);
bool hasDerivedMethod = methodInfo.DeclaringType.IsSubclassOf(typeof(Base));
return hasDerivedMethod;

}

private uint SwigDirectorMethodUIntMethod(uint x) {
return UIntMethod(x);
}

private void SwigDirectorMethodBaseBoolMethod(global::System.IntPtr b, bool flag) {
BaseBoolMethod(new Base(b, false), flag);
}

public delegate uint SwigDelegateBase_0(uint x);
public delegate void SwigDelegateBase_l(global::System.IntPtr b, bool flag);

private SwigDelegateBase_ 0 swigDelegate0;
private SwigDelegateBase_l swigDelegatel;

private static global::System.Type[] swigMethodTypes0 = new global::System.Type[] { typeof(uint) };
private static global::System.Type[] swigMethodTypesl = new global::System.Type[] { typeof(Base), typeof(bool) };

Everything from the SswigDirectorConnect () method and below is code that is only generated when directors are enabled. The design comprises a C# delegate being initialised for each
virtual method on construction of the class. Let's examine the BaseBoolMethod.

In the Base constructor a call is made toSwigDirectorConnect () which contains the initialisation code for all the virtual methods. It uses a support method,
SwigDerivedClassHasMethod (), which simply uses reflection to determine if the named method, BaseBoolMethod, with the list of required parameter types, exists in a subclass. If it does
not exist, the delegate is not initialised as there is no need for unmanaged code to call back into managed C# code. However, if there is an overridden method in any subclass, the delegate is
required. It is then initialised to the SwigDirectorMethodBaseBoolMethod which in turn will call BaseBoolMethod if invoked. The delegate is not initialised to the BaseBoolMethod
directly as quite often types will need marshalling from the unmanaged type to the managed type in which case an intermediary method (SwigDirectorMethodBaseBoolMethod) is
required for the marshalling. In this case, the C# Base class needs to be created from the unmanaged IntPtr type.

The last thing that SwigDirectorConnect () does is to pass the delegates to the unmanaged code. It calls the intermediary method Base_director_connect () which is really a call to
the C function CSharp_Base_director_connect (). This method simply maps each C# delegate onto a C function pointer.

23.6 C# Directors

212

SWIG-4.2 Documentation

SWIGEXPORT void SWIGSTDCALL CSharp Base_director_connect(void *objarg,
SwigDirector_ Bas SWIG_Callback0_t callbackO0,
SwigDirector_ Bas SWIG_Callbackl_t callbackl) {

Base *obj = (Base *)objarg;
SwigDirector Base *director = dynamic_cast<SwigDirector_ Base *>(obj);
if (director) {
director->swig_connect_director(callback0, callbackl);
}
}

class SwigDirector Base : public Base, public Swig::Director {
public:

SwigDirector_Base();

virtual unsigned int UIntMethod(unsigned int x);

virtual ~SwigDirector_Base();

virtual void BaseBoolMethod(Base const &b, bool flag);

typedef unsigned int (SWIGSTDCALL* SWIG_Callback0_t)(unsigned int);

typedef void (SWIGSTDCALL* SWIG_Callbackl_t)(void *, unsigned int);

void swig_connect_director (SWIG_Callback0_t callbackUIntMethod,
SWIG_Callbackl t callbackBaseBoolMethod);

private:
SWIG_Callback0_t swig_callbackUIntMethod;
SWIG_Callbackl_t swig_callbackBaseBoolMethod;
void swig_init_callbacks();

}i

void SwigDirector_ Base::swig_connect_director (SWIG_Callback0_t callbackUIntMethod,
SWIG_Callbackl_t callbackBaseBoolMethod)
swig_callbackUIntMethod = callbackUIntMethod;
swig_callbackBaseBoolMethod = callbackBaseBoolMethod;

-~

}

Note that for each director class SWIG creates an unmanaged director class for making the callbacks. For example Base has swigDirector_Base and SwigDirector_Base is derived
from Base. Should a C# class be derived fromBase, the underlying C++ swigDirector_Base is created rather thanBase. The swigDirector_Base class then implements all the virtual
methods, redirecting calls up to managed code if the callback/delegate is non-zero. The implementation of SwigDirector_Base::BaseBoolMethod shows this - the callback is made by
invoking the swig_callbackBaseBoolMethod function pointer:

void SwigDirector_Base::BaseBoolMethod(Base const &b, bool flag) {
void * jb = 0 ;
unsigned int jflag ;

if (!swig_callbackBaseBoolMethod) {
Base::BaseBoolMethod (b, flag);

return;

else {

jb = (Base *) &b;

jflag = flag;
swig_callbackBaseBoolMethod(jb, jflag);

-~

The delegates from the above example are public by default:

public delegate uint SwigDelegateBase 0(uint x);
public delegate void SwigDelegateBase 1l(global::System.IntPtr b, bool flag);

These can be changed if desired via the csdirectordelegatemodifiers %feature directive. For example, using $feature("csdirectordelegatemodifiers") "internal"
before SWIG parses the Base class will change all the delegates to internal :

internal delegate uint SwigDelegateBase 0(uint x);
internal delegate void SwigDelegateBase_ l(global::System.IntPtr b, bool flag);

23.6.3 Director caveats

There is a subtle gotcha with directors. If default parameters are used, it is recommended to follow a pattern of always calling a single method in any C# derived class. An example will clarify
this and the reasoning behind the recommendation. Consider the following C++ class wrapped as a director class:

class Defaults {
public:

virtual ~Defaults();

virtual void DefaultMethod(int a=-100);
Yi

Recall that C++ methods with default parameters generate overloaded methods for each defaulted parameter, so a C# derived class can be created with two DefaultMethod override
methods:

public class CSharpDefaults : Defaults

{
public override void DefaultMethod()
{
DefaultMethod(-100); // note C++ default value used

}

public override void DefaultMethod(int x)

{

}

It may not be clear at first, but should a user intend to call cCSharpDefaults.DefaultMethod () from C++, a call is actually made to CSharpDefaults.DefaultMethod(int). Thisis
because the initial call is made in C++ and therefore the DefaultMethod (int) method will be called as is expected with C++ calls to methods with defaults, with the default being set to -

23.6 C# Directors

SWIG-4.2 Documentation

100. The callback/delegate matching this method is of course the overloaded method DefaultMethod (int). However, a call from C# tocSharpDefaults.DefaultMethod () will of
course call this exact method and in order for behaviour to be consistent with calls from C++, the implementation should pass the call on to CSharpbDefaults.DefaultMethod (int)using
the C++ default value, as shown above.

23.7 Multiple modules

When using multiple modules it is possible to compile each SWIG generated wrapper into a different assembly. However, by default the generated code may not compile if generated classes in
one assembly use generated classes in another assembly. The visibility of the getCPtr () and pointer constructor generated from the csbody typemaps needs changing. The default visibility
is internal but it needs to be public for access from a different assembly. Just changing ‘internal' to 'public' in the typemap achieves this. Two macros are available in csharp.swg to
make this easier and using them is the preferred approach over simply copying the typemaps and modifying as this is forward compatible with any changes in the csbody typemap in future
versions of SWIG. The macros are for the proxy and typewrapper classes and can respectively be used to to make the method and constructor public:

SWIG_CSBODY_ PROXY(public, public, SWIGTYPE)
SWIG_CSBODY TYPEWRAPPER(public, public, public, SWIGTYPE)

Alternatively, instead of exposing these as public, consider using the [assembly:InternalsVisibleTo("Name")] attribute available in the .NET framework when you know which
assemblies these can be exposed to. Another approach would be to make these public, but also to hide them from intellisense by using the
[System.ComponentModel.EditorBrowsable (System.ComponentModel.EditorBrowsableState.Never)] attribute if you don't want users to easily stumble upon these so
called 'internal workings' of the wrappers.

23.8 C# named and optional arguments

In C++ you can specify default arguments for functions, methods, and constructors. C# offers named arguments. This feature, specific to C#, lets you bind default argument functions with
default arguments in C#. SWIG also allows you to add default arguments to C# functions which don't have default arguments in C++.

The cs:defaultargs feature enables C# named arguments with C# default values. Using this feature will turn off SWIG's default handling for default arguments, which would create an
override for each defaulted argument.

For this feature, you first specify the function/method/constructor you want it to impact. Inside the feature call you specify each argument you want to override. If you specify none, it will take
the literal text from c++ for each argument and apply that in C#. That often works fine, but when it doesn't you can supply a string literal with a C# expression to be used as an override. Or you
can supply an int literal, or a float literal. If you want to give a literal string you need to include an escaped quote at the start and end of the literal such as "\"a string\"".

Let's consider an example:

$feature("cs:defaultargs") Foo::Foo;
$feature("cs:defaultargs", x=0, z=4) Foo::bar;
$feature("cs:defaultargs", x="\"five\"") Foo::z00;

%inline %{
class Foo {

public:
Foo(int a, int b=1, int c=2)
{
}
int bar(int x, int y=2, int 2z=3)
{
return x+y+z;
}
int bat(int x=1, int y=2, int 2z=3)
{
return x+y+z;
}
int zoo(std::string x="four")
{
return (int)x.size();
}
Yi
%}

The generated C# proxy class contains:

public class Foo : global::System.IDisposable {
public Foo(int a, int b=1, int c=2)
public int bar(int x=0, int y=2, int z=4)
public int bat(int x, int y, int 2z)
public int bat(int x, int y)
public int bat(int x)
public int bat()

public int zoo(string x="five")

Note that:
1. The constructor uses the default arguments exactly as taken from C++.
2. The bar method uses the default arguments exactly as taken from C++ apart from z whose default value is changed to 4, and x did not have a default value in C++, but does in the
generated C#.
3. The bat method does not use thecs:defaultargs feature and so the default handling of one overloaded C# method per defaulted C++ argument is generated.
4. The zoo method's string value is overridden by the new string value from the feature.

Compatibility Note: SWIG-4.2.0 added support for thecs :defaultargs feature.
23.9 Ci# Typemap examples

This section includes a few examples of typemaps. For more examples, you might look at the files "csharp.swg" and "typemaps. i " in the SWIG library.
23.9.1 Memory management when returning references to member variables

This example shows how to prevent premature garbage collection of objects when the underlying C++ class returns a pointer or reference to a member variable. The example is a direct
equivalent to this Java equivalent.

23.7 Multiple modules 214

SWIG-4.2 Documentation

Consider the following C++ code:

struct Wheel {

int size;

Wheel(int sz = 0) : size(sz) {}
}i

class Bike {
Wheel wheel;
public:
Bike(int val) : wheel(val) {}
Wheel& getWheel() { return wheel; }
b

and the following usage from C# after running the code through SWIG:

Wheel wheel = new Bike(10).getWheel();
global::System.Console.WriteLine("wheel size: " + wheel.size);
// Simulate a garbage collection

global ystem.GC.Collect();

global ystem.GC.WaitForPendingFinalizers();
global::System.Console.WriteLine("wheel size: " + wheel.size);

Don't be surprised that if the resulting output gives strange results such as...

wheel size: 10
wheel size: 135019664

What has happened here is the garbage collector has collected the Bike instance as it doesn't think it is needed any more. The proxy instance, wheel, contains a reference to memory that
was deleted when the Bike instance was collected. In order to prevent the garbage collector from collecting the Bike instance a reference to the Bike must be added to thewheel instance.
You can do this by adding the reference when the getWheel () method is called using the following typemaps.

%typemap (cscode) Wheel %{
// Ensure that the GC doesn't collect any Bike instance set from C#
private Bike bikeReference;
internal void addReference(Bike bike) {
bikeReference = bike;
}
%}

// Add a C# reference to prevent premature garbage collection and resulting use
// of dangling C++ pointer. Intended for methods that return pointers or
// references to a member variable.
%typemap(csout, excode=SWIGEXCODE) Wheel& getWheel {
global::System.IntPtr cPtr = $imcall;$excode
$csclassname ret = null;
if (cPtr != global::System.IntPtr.Zero) {
ret = new $csclassname(cPtr, $owner);
ret.addReference(this);
}

return ret;

The code in the first typemap gets added to the wheel proxy class. The code in the second typemap constitutes the bulk of the code in the generated getwheel () function:

public class Wheel : global::System.IDisposable {
// Ensure that the GC doesn't collect any Bike instance set from C#
private Bike bikeReference;
internal void addReference(Bike bike) {
bikeReference = bike;
}
}

public class Bike : global::System.IDisposable {
public Wheel getWheel() {
global::System.IntPtr cPtr = examplePINVOKE.Bike getWheel(swigCPtr);
Wheel ret = null;
if (cPtr != global::System.IntPtr.Zero) {
ret = new Wheel(cPtr, false);
ret.addReference(this);
}

return ret;

Note the addrReference call.
23.9.2 Memory management for objects passed to the C++ layer

The example is a direct equivalent to this Java equivalent. Managing memory can be tricky when using C++ and C# proxy classes. The previous example shows one such case and this
example looks at memory management for a class passed to a C++ method which expects the object to remain in scope after the function has returned. Consider the following two C++
classes:

struct Element {
int value;
Element(int val) : value(val) {}
}i
class Container {
Element* element;
public:

23.7 Multiple modules

SWIG-4.2 Documentation

Container() : element(0) {}
void setElement(Element* e) { element = e; }
Element* getElement() { return element; }

b

and usage from C++

Container container;

Element element(20);

container.setElement (&element);

cout << "element.value: " << container.getElement()->value << endl;

and more or less equivalent usage from C#

Container container = new Container();
Element element = new Element(20);
container.setElement(element);

The C++ code will always print out 20, but the value printed out may not be this in the C# equivalent code. In order to understand why, consider a garbage collection occurring...

Container container = new Container();

Element element = new Element(20);

container.setElement (element);

global::System.Console.WriteLine("element.value: " + container.getElement().value);
// Simulate a garbage collection

global::System.GC.Collect();

global ystem.GC.WaitForPendingFinalizers();
global::System.Console.WriteLine("element.value: " + container.getElement().value);

The temporary element created with new Element (20) could get garbage collected which ultimately means the container variable is holding a dangling pointer, thereby printing out any
old random value instead of the expected value of 20. One solution is to add in the appropriate references in the C# layer...

public class Container : global::System.IDisposable {

// Ensure that the GC doesn't collect any Element set from C#
// as the underlying C++ class stores a shallow copy
private Element elementReference;

public void setElement(Element e) {
examplePINVOKE.Container_ setElement(swigCPtr, Element.getCPtr(e));
elementReference = e;

Th

(5

following typemaps can be used to generate this code:

%typemap(cscode) Container %{
// Ensure that the GC doesn't collect any Element set from C#
// as the underlying C++ class stores a shallow copy
private Element elementReference;

%}

%typemap(csin,
post=" elementReference = $csinput;"
) Element *e "Element.getCPtr($csinput)"”

The 'cscode’ typemap simply adds in the specified code into the C# proxy class. The 'csin' typemap matches the input parameter type and name for the setElement method and the 'post'
typemap attribute allows adding code after the PInvoke call. The 'post' code is generated into a finally block after the PInvoke call so the resulting code isn't quite as mentioned earlier,
setElement is actually:

public void setElement(Element e) {

try {

examplePINVOKE.Container_ setElement(swigCPtr, Element.getCPtr(e));
} finally {

elementReference = e;
}

23.9.3 Date marshalling using the csin typemap and associated attributes

The NaN Exception example is a simple example of the "javain" typemap and its 'pre' attribute. This example demonstrates how a C++ date class, say CDate, can be mapped onto the
standard .NET date class, System.DateTime by using the 'pre’, 'post' and 'pgcppname’ attributes of the "csin" typemap (the C# equivalent to the "javain" typemap). The example is an
equivalent to the Java Date marshalling example. The idea is that the System.DateTime is used wherever the C++ AP| uses a CDate. Let's assume the code being wrapped is as follows:

class CDate {
public:
CDhate();
CDate(int year, int month, int day);
int getYear();
int getMonth();
int getDay();
}i
struct Action {
static int doSomething(const CDate &dateIn, CDate &dateOut);
Action(const CDate &date, CDate &dateOut);
Yi

23.7 Multiple modules

SWIG-4.2 Documentation

Note that dateIn is const and therefore read only anddateOut is a non-const output type.

First let's look at the code that is generated by default, where the C# proxy class CDate is used in the proxy interface:

public class Action : global::System.IDisposable {
public Action(CDate dateIn, CDate dateOut)
: this(examplePINVOKE.new_Action(CDate.getCPtr(dateIn), CDate.getCPtr(dateOut)), true) {
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();
}

public int doSomething(CDate dateIn, CDate dateOut) {
int ret = examplePINVOKE.Action doSomething(swigCPtr,
CDhate.getCPtr(dateln),
CDate.getCPtr(dateOut));
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();
return ret;

The cDate & and const CDate & C# code is generated from the following two default typemaps:

%typemap(cstype) SWIGTYPE & "$csclassname"
%typemap(csin) SWIGTYPE & "$csclassname.getCPtr($csinput)"

where '$csclassname’ is translated into the proxy class name, Chate and '$csinput' is translated into the name of the parameter, eg dateIn. From C#, the intention is then to call into a
modified APl with something like:

System.DateTime dateIn = new System.DateTime(2011, 4, 13);
System.DateTime dateOut = new System.DateTime();

// Note in calls below, dateIn remains unchanged and dateOut
// is set to a new value by the C++ call

Action action = new Action(dateIn, out dateOut);

dateIn = new System.DateTime(2012, 7, 14);

To achieve this mapping, we need to alter the default code generation slightly so that at the C# layer, a System.DateTime is converted into a CDate. The intermediary layer will still take a
pointer to the underlying cDate class. The typemaps to achieve this are shown below.

$typemap(cstype) const CDate & "System.DateTime"

%typemap(csin,
pre=" CDate temp$csinput = new CDate(S$csinput.Year, S$csinput.Month, $csinput.Day);"
) const CDate &
"$csclassname.getCPtr (temp$csinput)”

%typemap(cstype) CDate & "out System.DateTime"
%typemap(csin,
pre=" CDate temp$csinput = new CDate();",
" $csinput = new System.DateTime(temp$csinput.getYear(),"
" temp$csinput.getMonth(), temp$csinput.getDay(), 0, 0, 0);",
cshin="out $csinput"
) CDhate &
"$csclassname.getCPtr(temp$csinput)”

The resulting generated proxy code in the Action class follows:

public class Action : global::System.IDisposable {
public int doSomething(System.DateTime dateIn, out System.DateTime dateOut) {
CDate tempdateIn = new CDate(dateIn.Year, dateIn.Month, datelIn.Day);
CDate tempdateOut = new CDate();
try {
int ret = examplePINVOKE.Action_doSomething(swigCPtr,
CDate.getCPtr(tempdateIn),
CDate.getCPtr(tempdateOut));
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();
return ret;
} finally {
dateOut = new System.DateTime(tempdateOut.getYear(),
tempdateOut.getMonth(), tempdateOut.getDay(), 0, 0, 0);

}
static private global::System.IntPtr SwigConstructAction(System.DateTime dateIn, out System.DateTime dateOut) {

CDate tempdateIn = new CDate(dateIn.Year, dateIn.Month, datelIn.Day);
CDate tempdateOut = new CDate();

try {
return examplePINVOKE.new Action(CDate.getCPtr(tempdateIn), CDate.getCPtr(tempdateOut));
} finally {
dateOut = new System.DateTime(tempdateOut.getYear(),
tempdateOut.getMonth(), tempdateOut.getDay(), 0, 0, 0);
}
}

public Action(System.DateTime dateIn, out System.DateTime dateOut)
: this(Action.SwigConstructAction(dateIn, out dateOut), true) {
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();

23.7 Multiple modules

SWIG-4.2 Documentation

A few things to note:

The "cstype" typemap has changed the parameter type to System.DateTime instead of the default generatedcDate proxy.

The non-const CDate & type is marshalled as a reference parameter in C# as the date cannot be explicitly set once the object has been created, so a new object is created instead.

The code in the 'pre’ attribute appears before the intermediary call (examplePINVOKE.new Action/examplePINVOKE.Action doSomething).

The code in the 'post' attribute appears after the intermediary calll.

Atry .. finally block is generated with the intermediary call in the try block and 'post' code in the finally block. The alternative of just using a temporary variable for the return value from the
intermediary call and the 'post' code being inserted before the return statement is not possible given that the intermediary call and method return comes from a single source (the "csout"
typemap).

The temporary variables in the "csin" typemaps are called temp$csin, where "$csin" is replaced with the parameter name. "$csin" is used to mangle the variable name so that more
than one CDate & type can be used as a parameter in a method, otherwise two or more local variables with the same name would be generated.

The use of the "csin" typemap causes a constructor helper function (SwigConstructAction) to be generated. This allows C# code to be called before the intermediary call made in the
constructor initialization list.

The ‘cshin' attribute is required for the SwigConstructAction constructor helper function so that the 2nd parameter is declared as out dateOut instead of justdateOut.

So far we have considered the date as an input only and an output only type. Now let's consider CDate * used as an input/output type. Consider the following C++ function which modifies the
date passed in:

void addYears(CDate *pDate, int years) {
*pDate = CDate(pDate->getYear() + years, pDate->getMonth(), pDate->getDay());
}

If usage of cbate * commonly follows this input/output pattern, usage from C# like the following

System.DateTime christmasEve = new System.DateTime (2000, 12, 24);
example.addYears(ref christmasEve, 10); // christmasEve now contains 2010-12-24

will be possible with the following cDate * typemaps

$typemap(cstype, out="System.DateTime") CDate * "ref System.DateTime"

%typemap(csin,
pre=" CDate temp$csinput = new CDate($csinput.Year, $csinput.Month, $csinput.Day);",
post=" $csinput = new System.DateTime(temp$csinput.getYear(),"

" temp$csinput.getMonth(), temp$csinput.getDay(), 0, 0, 0);",
cshin="ref $csinput"
) CDate *
"$csclassname.getCPtr(temp$csinput)"

Globals are wrapped by the module class and for a module called example, the typemaps result in the following code:

public class example {
public static void addYears(ref System.DateTime pDate, int years) {
CDate temppDate = new CDate(pDate.Year, pDate.Month, pDate.Day);

try {
examplePINVOKE.addYears (CDate.getCPtr (temppDate), years);
} finally ¢
pDate = new System.DateTime(temppDate.getYear(), temppDate.getMonth(), temppDate.getDay(),
0, 0, 0);
}

The following typemap is the same as the previous but demonstrates how a using block can be used for the temporary variable. The only change to the previous typemap is the introduction of
the 'terminator' attribute to terminate the using block. The subtractYears method is nearly identical to the above addyears method.

%typemap(csin,
pre=" using (CDate temp$csinput = new CDate($csinput.Year, $csinput.Month, $csinput.Day)) {",
post=" $csinput = new System.DateTime(temp$csinput.getYear(),"
" temp$csinput.getMonth(), temp$csinput.getDay(), 0, 0, 0);",
terminator=" } // terminate temp$csinput using block",
cshin="ref $csinput"
) CDate *

"$csclassname.getCPtr(temp$csinput)"

void subtractYears(CDate *pDate, int years) {
*pDate = CDate(pDate->getYear() - years, pDate->getMonth(), pDate->getDay());
}

The resulting generated code shows the termination of the using block:

public class example {
public static void subtractYears(ref System.DateTime pDate, int years) {
using (CDate temppDate = new CDate(pDate.Year, pDate.Month, pDate.Day)) {
try {
examplePINVOKE.subtractYears(CDate.getCPtr (temppDate), years);
} finally {
pDate = new System.DateTime(temppDate.getYear(), temppDate.getMonth(), temppDate.getDay(),
0, 0, 0);
}
} // terminate temppDate using block
}

23.9.4 A date example demonstrating marshalling of C# properties

23.7 Multiple modules

SWIG-4.2 Documentation

The previous section looked at converting a C++ date class to System.DateTime for parameters. This section extends this idea so that the correct marshalling is obtained when wrapping
C++ variables. Consider the same CDate class from the previous section and a global variable:

CDate ImportantDate = CDate(1999, 12, 31);

The aim is to use System.DateTime from C# when accessing this date as shown in the following usage where the module name is 'example':

example.ImportantDate = new System.DateTime (2000, 11, 22);
System.DateTime importantDate = example.ImportantDate;
Console.WriteLine("Important date: " + importantDate);

When SWIG wraps a variable that is a class/struct/union, it is wrapped using a pointer to the type for the reasons given in Structure data members. The typemap type required is thusCDate
*. Given that the previous section already designedcDate * typemaps, we'll use those same typemaps plus the ‘csvarin' and ‘csvarout' typemaps.

$typemap(cstype, out="System.DateTime") CDate * "ref System.DateTime"

%typemap(csin,
pre=" CDate temp$csinput = new CDate($csinput.Year, $csinput.Month, $csinput.Day);",
" $csinput = new System.DateTime(temp$csinput.getYear(),"
" temp$csinput.getMonth(), tempS$csinput.getDay(), 0, 0, 0);",
cshin="ref $csinput"
) CDate *
"$csclassname.getCPtr(temp$csinput)"

%typemap(csvarin, excode=SWIGEXCODE2) CDate * %{
/* csvarin typemap code */
set {
CDate temp$csinput = new CDate($csinput.Year, $csinput.Month, $csinput.Day);
$imcall; $excode
} %}

%typemap (csvarout, excode=SWIGEXCODE2) CDate * %{
/* csvarout typemap code */

get {
global::System.IntPtr cPtr = $imcall;
CDate tempDate = (cPtr == global::System.IntPtr.Zero) ? null : new CDate(cPtr, S$owner);S$excode
return new System.DateTime(tempDate.getYear(), tempDate.getMonth(), tempDate.getDay(),
0, 0, 0);
} %}

For a module called example, the typemaps result in the following code:

public class example {
public static System.DateTime ImportantDate {
/* csvarin typemap code */
set {
CDate tempvalue = new CDate(value.Year, value.Month, value.Day);
examplePINVOKE. ImportantDate_set(CDate.getCPtr(tempvalue));

¥

/* csvarout typemap code */

get {
global::System.IntPtr cPtr = examplePINVOKE.ImportantDate_get();
CDhate tempDate = (cPtr == global::System.IntPtr.Zero) ? null : new CDate(cPtr, false);
return new System.DateTime(tempDate.getYear(), tempDate.getMonth(), tempDate.getDay(),

0, 0, 0);
}

Some points to note:

The property set comes from the ‘csvarin' typemap and the property get comes from the ‘csvarout' typemap.

The type used for the property comes from the 'cstype' typemap. This particular example has the 'out' attribute set in the typemap and as it is specified, it is used in preference to the type
in the typemap body. This is because the type in the 'out' attribute can never include modifiers such as 'ref', thereby avoiding code such as public static ref System.DateTime
ImportantDate { ...,which would of course not compile.

The $excode special variable expands to nothing as there are no exception handlers specified in any of the unmanaged code typemaps (in fact the marshalling was done using the
default unmanaged code typemaps.)

The $imcall typemap expands to the appropriate intermediary method call in the examplePINVOKE class.

The $csinput special variable in the 'csin' typemap always expands to value for properties. In this case $csclassname.getCPtr (temp$csinput) expands to
CDate.getCPtr(tempvalue)

The 'csin' typemap has 'pre’, 'post' and 'cshin’ attributes, and these are all ignored in the property set. The code in these attributes must instead be replicated within the 'csvarin' typemap.
The line creating the temp$csinput variable is such an example; it is identical to what is in the 'pre' attribute.

23.9.5 Date example demonstrating the 'pre' and 'post’ typemap attributes for directors

The 'pre' and 'post' attributes in the "csdirectorin" typemap act like the attributes of the same name in the "csin" typemap. For example if we modify the Date marshalling example like this:

class CDhate {
void setYear(int);
void setMonth(int);
void setDay(int);
b
struct Action {
virtual void someCallback(CDate &date);
virtual ~Action();

and declare $feature ("director") forthe Action class, we would have to define additional marshalling rules for CDate & parameter. The typemap may look like this:

23.7 Multiple modules

SWIG-4.2 Documentation

%typemap(csdirectorin,
pre="System.DateTime temp$iminput = new System.DateTime();",
post="CDate temp2$iminput = new CDate(S$iminput, false);\n"
"temp2$iminput.setYear (tempdate.Year);\n"
"temp2$iminput.setMonth(tempdate.Month);\n"
"temp2$iminput.setDay(tempdate.Day);"
) CDhate &date "out temp$iminput"

The generated proxy class code will then contain the following wrapper for calling user-overloaded someCallback():

private void SwigDirectorMethodsomeCallback(global::System.IntPtr date) {

System.DateTime tempdate = new System.DateTime();
try {

someCallback(out tempdate);

finally {

// we create a managed wrapper around the existing C reference, just for convenience

CDate temp2date = new CDate(date, false);

temp2date.setYear(tempdate.Year);

temp2date.setMonth(tempdate.Month);

temp2date.setDay(tempdate.Day);

-~

Pay special attention to the memory management issues, using these attributes.
23.9.6 Turning proxy classes into partial classes

C# supports the notion of partial classes whereby a class definition can be split into more than one file. It is possible to turn the wrapped C++ class into a partial C# class using the
csclassmodifiers typemap. Consider a C++ class calledExtendMe :

class ExtendMe {
public:

int Partl() { return 1; }
}i

The default C# proxy class generated is:

public class ExtendMe : global::System.IDisposable {

public int Partl() {

}

The default csclassmodifiers typemap shipped with SWIG is

%typemap(csclassmodifiers) SWIGTYPE "public class"

Note that the type used is the special catch all type SWIGTYPE . If instead we use the following typemap to override this for just theExtendMe class:

%typemap(csclassmodifiers) ExtendMe "public partial class"

The C# proxy class becomes a partial class:

public partial class ExtendMe : global::System.IDisposable {

public int Partl() {

}

You can then of course declare another part of the partial class elsewhere, for example:

public partial class ExtendMe : global::System.IDisposable {
public int Part2() {
return 2;

}

a

and compile the following code:

ExtendMe em = new ExtendMe();
Console.WriteLine("partl: {0}", em.Partl());
Console.WriteLine("part2: {0}", em.Part2());

demonstrating that the class contains methods calling both unmanaged code - Part1 () and managed code - Part2 (). The following example is an alternative approach to adding managed

code to the generated proxy class.

23.9.7 Turning proxy cl into led cl

The technique in the previous section can be used to make the proxy class a sealed class. Consider a C++ class NotABaseClass that you don't want to be derived from in C#:

struct NotABaseClass {

23.7 Multiple modules

220

SWIG-4.2 Documentation

NotABaseClass();
~NotABaseClass();
}i

The default C# proxy class method generated with Dispose method is:

public class NotABaseClass : global::System.IDisposable {

public virtual void Dispose() {

}

The csclassmodifiers typemap can be used to modify the class modifiers and the csmethodmodifiers feature can be used on the destructor to modify the proxy's Dispose method:

%typemap (csclassmodifiers) NotABaseClass "public sealed class"
%csmethodmodifiers NotABaseClass::~NotABaseClass "public /*virtual*/";

The relevant generated code is thus:

public sealed class NotABaseClass : global::System.IDisposable {

public /*virtual*/ void Dispose() {

}

Any attempt to derive from the NotABaseClass in C# will result in a C# compiler error, for example:

public class Derived : NotABaseClass {
}i

runme.cs(6,14): error CS0509: “Derived': cannot derive from sealed type ~NotABaseClass'

Finally, if you get a warning about use of 'protected' in the generated base class:

NotABaseClass.cs(14,18): warning CS0628: “NotABaseClass.swigCMemOwn': new protected member declared in sealed class

Either suppress the warning or modify the generated code by copying and tweaking the default 'csbody' typemap code in csharp.swg by modifying swigCMemOwn to not be protected.

23.9.8 Extending proxy classes with additional C# code

The previous example showed how to use partial classes to add functionality to a generated C# proxy class. It is also possible to extend a wrapped struct/class with C/C++ code by using the
%extend directive. A third approach is to add some C# methods into the generated proxy class with the cscode typemap. If we declare the following typemap before SWIG parses the
ExtendMe class used in the previous example

%typemap (cscode) ExtendMe %{
public int Part3() {
return 3;
}
%}

The generated C# proxy class will instead be:

public class ExtendMe : global::System.IDisposable {
public int Part3() {
return 3;
}
public int Partl() {

i

23.9.9 Underlying type for enums

C# enums use int as the underlying type for each enum item, unless there is a C++11 enum base specifying the underlying C++ enum type. If there is a C++ base enum then this is
automatically converted to the equivalent C# integral type. If you wish to change the underlying type to something else, then use the csbase typemap. For example when your C++ code uses
a value larger than int, this is necessary as the C# compiler will not compile values which are too large to fit into an int. Here is an example:

%typemap (csbase) BigNumbers "uint"
%inline %{

enum BigNumbers { big=0x80000000, bigger };
%}

The generated enum will then use the given underlying type and compile correctly:

public enum BigNumbers : uint {
big = 0x80000000,
bigger

}

If a C++11 enum base is specified, such as unsigned short in the following:

23.7 Multiple modules

SWIG-4.2 Documentation

%inline %{
enum SmallNumbers : unsigned short { tiny, small=1 };
%}

Th

[}

underlying type is automatically converted to the C# equivalent, ushort:

public enum SmallNumbers : ushort {
tiny,
small = 1

The underlying C# type can still be changed to something else using the csbase typemap but the replace attribute must be set to avoid an ignored warnings as there are effectively two
specified bases, which of course is not possible. For example:

%typemap(csbase, replace="1") SmallNumbers "byte"
%inline %{

enum SmallNumbers : unsigned short { tiny, small=1 };
%}

which generates the desired underlying enum type:

public enum SmallNumbers : byte {
tiny,
small = 1

24 SWIG and D

Introduction

Command line invocation

Typemaps

C# <-> D name comparison

ctype, imtype. dtype
in, out, directorin. directorout

din, dout, ddirectorin, ddirectorout
typecheck typemaps
Code injection typemaps
o Special variable macros
Other D code control features
o D begin
o D and %feature
Pragmas

D Exceptions
D Directors

Other features
o Extended namespace support (nspace)
o Native pointer support
o Operator overloading
o Running the test-suite
D Typemap examples
Work in progress and planned features

°

°

°

°

o

°

24.1 Introduction

From the D Programming Language web site: D is a systems programming language. Its focus is on combining the power and high performance of C and C++ with the programmer productivity
of modern languages like Ruby and Python. [...] The D language is statically typed and compiles directly to machine code. As such, it is not very surprising that D is able to directly interface
with C libraries. Why would a SWIG module for D be needed then in the first place?

Well, besides the obvious downside that the C header files have to be manually converted to D modules for this to work, there is one major inconvenience with this approach: D code usually is
on a higher abstraction level than C, and many of the features that make D interesting are simply not available when dealing with C libraries, requiring you e.g. to manually convert strings
between pointers to \0-terminated char arrays and D char arrays, making the algorithms from the D2 standard library unusable with C arrays and data structures, and so on.

While these issues can be worked around relatively easy by hand-coding a thin wrapper layer around the C library in question, there is another issue where writing wrapper code per hand is
not feasible: C++ libraries. Support for C++ was added in D2 via extern (C++) but this support is still very limited, and a custom wrapper layer is still required in many cases.

To help addressing these issues, the SWIG C# module has been forked to support D. Is has evolved quite a lot since then, but there are still many similarities, so if you do not find what you
are looking for on this page, it might be worth having a look at the chapter on C# (and also on Java, since the C# module was in turn forked from it).

24.2 Command line invocation

To activate the D module, pass the -d option to SWIG at the command line. The same standard command line options as with any other language module are available, plus the following D
specific ones:

-d2

Prior to SWIG 4.2.0, SWIG generated wrappers for D1/Tango by default and -d2 could be used to generate D2/Phobos wrappers instead. SWIG 4.2.0 dropped support for D1, and D2
wrappers are now produced by default. This option is still recognised to allow existing build systems calling SWIG to work, but is now a no-op.

-splitproxy

By default, SWIG generates two D modules: the proxy module, named like the source module (either specified via the $module directive or via the module command line option), which

contains all the proxy classes, functions, enums, etc., and the intermediary module (named like the proxy module, but suffixed with _im), which contains all the extern(c) function
declarations and other private parts only used internally by the proxy module.

If the split proxy mode is enabled by passing this option at the command line, all proxy classes and enums are emitted to their own D module instead. The main proxy module only
contains free functions and constants in this case.

-package <pkg>

24.1 Introduction

https://www.digitalmars.com/d/
https://www.digitalmars.com/d/1.0/interfaceToC.html

SWIG-4.2 Documentation

By default, the proxy D modules and the intermediary D module are written to the root package. Using this option, you can specify another target package instead.
-wrapperlibrary <wl>

The code SWIG generates to dynamically load the C/C++ wrapper layer looks for a library called $module_wrap by default. With this option, you can override the name of the file the
wrapper code loads at runtime (the 1ib prefix and the suffix for shared libraries are appended automatically, depending on the OS).

This might especially be useful if you want to invoke SWIG several times on separate modules, but compile the resulting code into a single shared library.
24.3 Typemaps

24.3.1 C# <-> D name comparison

If you already know the SWIG C# module, you might find the following name comparison table useful:

ctype <-> ctype

imtype <-> imtype

cstype <-> dtype

csin <-> din

csout <-> dout
csdirectorin <-> ddirectorin
csdirectorout <-> ddirectorout
csinterfaces <-> dinterfaces
csinterfaces_derived <-> dinterfaces_derived
csbase <-> dbase
csclassmodifiers <-> dclassmodifiers
cscode <-> dcode

csimports <-> dimports

csbody <-> dbody

csfinalize <-> ddestructor
csdisposing <-> ddispose
csdisposing_derived <-> ddispose_derived

24.3.2 ctype, imtype, dtype
Mapping of types between the C/C++ library, the C/C++ library wrapper exposing the C functions, the D wrapper module importing these functions and the D proxy code.

The ctype typemap is used to determine the types to use in the C wrapper functions. The types from the imtype typemap are used in the extern(C) declarations of these functions in the
intermediary D module. The dtype typemap contains the D types used in the D proxy module/class.

24.3.3 in, out, directorin, directorout
Used for converting between the types for C/C++ and D when generating the code for the wrapper functions (on the C++ side).

The code from the in typemap is used to convert arguments to the C wrapper function to the type used in the wrapped code (ctype ->original C++ type), the out typemap is utilized to
convert values from the wrapped code to wrapper function return types (original C++ type->ctype).

The directorin typemap is used to convert parameters to the type used in the D director callback function, its return value is processed by directorout (see below).
24.3.4 din, dout, ddirectorin, ddirectorout
Typemaps for code generation in D proxy and type wrapper classes.
The din typemap is used for converting function parameter types from the type used in the proxy module or class to the type used in the intermediary D module (the $dinput macro is

replaced). To inject further parameter processing code before or after the call to the intermediary layer, the pre , post and terminator attributes can be used (please refer to the C# date
marshalling example for more information on these).

The dout typemap is used for converting function return values from the return type used in the intermediary D module to the type returned by the proxy function. The $excode special
variable in dout typemaps is replaced by theexcode typemap attribute code if the method can throw any exceptions from unmanaged code, otherwise by nothing (the $imcall and $owner
macros are replaced).

The code from the ddirectorin and ddirectorout typemaps is used for conversion in director callback functions. Arguments are converted to the type used in the proxy class method
they are calling by using the code from ddirectorin, the proxy class method return value is converted to the type the C++ code expects via the ddirectorout typemap (the $dcall and
$winput macros are replaced).

The full chain of type conversions when a director callback is invoked looks like this:

type CPPClass::method(type a)
T 4
<directorout> <directorin>
T 13
ctype methodCallback(ctype a) i
imtype methodCallback(imtype a) D
T {
<ddirectorout> <ddirectorin>
T 13
dtype DClass.method(dtype a)

24.3.5 typecheck typemaps

Because, unlike many scripting languages supported by SWIG, D does not need any dynamic dispatch helper to access an overloaded function, the purpose of these is merely to issue a
warning for overloaded C++ functions that cannot be overloaded in D (as more than one C++ type maps to a single D type).

24.3.6 Code injection typemaps
These typemaps are used for generating the skeleton of proxy classes for C++ types.

By overriding dbase, dinterfaces ordinterfaces_derived, the inheritance chain of the generated proxy class for a type can be modified. dclassmodifiers allows you to add any
custom modifiers around the class keyword.

Using dcode and dimports, you can specify additional D code which will be emitted into the class body respectively the imports section of the D module the class is written to.

dconstructor, ddestructor, ddispose and ddispose_derived are used to generate the class constructor, destructor and dispose () method, respectively. The auxiliary code for
handling the pointer to the C++ object is stored in dbody and dbody_derived. You can override them for specific types.

Code can also be injected into the D proxy class using $proxycode.

24.3 Typemaps 223

SWIG-4.2 Documentation

24.3.7 Special variable macros

The standard SWIG special variables are available for use within typemaps as described in the Typemaps documentation , for example $1, $input, $result etc.
When generating D wrappers, a few additional macros are available:
$dclassname (C#: $csclassname)

This special variable works similar tosn_type in that it returns the name of a type - it expands to the D proxy class name of the type being wrapped. If the type does not have an
associated proxy class, it expands to the type wrapper class name, for example, SWIGTYPE_p_p_SomeCppClass is generated when wrapping SomeCppClass **.

There are two other variants available, $ sdclassname and $*dclassname. The former adds a level of indirection, while the latter removes one. For instance, when wrapping Foo **,
$*dclassname would be replaced by the proxy class name corresponding to Foo *.

$dclazzname (C#: $csclazzname)

This special variable expands the fully qualified C++ class into the package name, if used by the nspace feature, and the proxy class name, mangled for use as a function name. For
example, Namespacel: :Namespace2: :Klass is expanded into Namespacel Namespace2_Klass_.

This special variable might be useful for calling certain functions in the wrapper layer (e.g. upcast wrappers) which are mangled like this.
$null

In code inserted into the generated C/C++ wrapper functions, this variable is replaced by either 0 or nothing at all, depending on whether the function has a return value or not. It can be
used to bail out early e.g. in case of errors (return $null;).

$dinput (C#: $csinput
This variable is used indin typemaps and is replaced by the expression which is to be passed to C/C++.

For example, this input

$typemap(din) SomeClass * "SomeClass.getCPointer($dinput)"

%inline %{

class SomeClass {};

void foo(SomeClass *arg);
%}

leads to the following D proxy code being generated:

void foo(SomeClass arg) {
example_im.foo(SomeClass.getCPointer(arg));

}

$imcall and $owner (C#: $imcall)

These variables are used indout typemaps. $imcall contains the call to the intermediary module which provides the value to be used, and sowner signals if the caller is responsible
for managing the object lifetime (that is, if the called method is a constructor or has been marked via $newobject).

Consider the following example:

%typemap(dout) SomeClass * {
return new SomeClass($imcall, $owner);

}

%inline %{
class SomeClass;
SomeClass *foo();

gnewobject bar(
SomeClass *bar(
%}

)i
)i

The code generated for foo () and bar () looks like this:

SomeClass foo() {
return new SomeClass(example im.foo(), false);

}

SomeClass bar() {
return new SomeClass(example_im.bar(), true);

}

$dcall and $winput (C#: $cscall, $iminput)

These variables are used in the director-specific typemapsddirectorin and ddirectorout. They are more or less the reverse of the$imcall and $dinput macros: $dcall
contains the invocation of the D proxy method of which the return value is to be passed back to C++, $winput contains the parameter value from C++.

$excode

This variable is used indout and dconstructor typemaps and is filled with the contents of the excode typemap attribute if an exception could be thrown from the C++ side. See the
C# documentation for details.

$dbaseclass
Currently for internal use only, it contains the D name of the C++ base class (if any) inside proxy classes.
$directorconnect
This macro is only valid inside thedconstructor typemap and contains the value of thedconstructor typemap attribute if the currently wrapped class has directors enabled.

This is how the defaultdconstructor typemap looks like (you usually do not want to specify a custom one):

%typemap (dconstructor, excode=SWIGEXCODE,
directorconnect="\n swigDirectorConnect();") SWIGTYPE {
this($imcall, true);$excode$directorconnect

}

24.3 Typemaps 224

SWIG-4.2 Documentation

$imfuncname

This special variable expands to the name of the function in the intermediary class that will be used in $imcall. Like, $imcall, this special variable is only expanded in the "dout" typemap.
$importtype (SomeDType)
This macro is used in thedimports typemap if a dependency on another D type generated by SWIG is added by a custom typemap.

Consider the following code snippet:

$typemap(dinterfaces) SomeClass "AnInterface, AnotherInterface"

This causes SWIG to add AnInterface and AnotherInterface to the base class list of SomeClass:

class SomeClass : AnInterface, AnotherInterface {

}

For this to work,AnInterface and AnotherInterface have to be in scope. If SWIG is not in split proxy mode, this is already the case, but if it is, they have to be added to the import
list via the dimports typemap. Additionally, the import statement depends on the package SWIG is configured to emit the modules to.

The $importtype macro helps you to elegantly solve this problem:

%typemap (dimports) RemoteMpe %{
$importtype(AnInterface)
$importtype(AnotherInterface)
%}

If SWIG is in split proxy mode, it expands to animport statement for the specified type, to nothing if not.
$module

Expands to the name of the main proxy D module.
$imdmodule

Contains the fully qualified name of the intermediary D module.
24.4 Other D code control features

24.4.1 D begin

It is possible to add a common comment at the start of every generated D file. The $module directive supports the dbegin option for this. The provided text is generated at the very beginning
of each generated D file. As it is generated before the D module statement, is only really useful for adding in a common comment into all generated D files. For example, copyright text for each
file:

gmodule (dbegin="/* Common comment. Copyright (C) 2000 Mr Nobody. */\n") nobodymodule

24.4.2 D and %feature

The D module defines a number of directives which modify theSWIG features set globally or for a specific declaration:
%dmanifestconst and $dconstvalue(value)

Out of the box, SWIG generates accessor methods for C#defines and C++ constants. The $dmanifestconst directive enables wrapping these constants as D manifest constants
(enum in D2).

For this to work, the C/C++ code for the constant value must directly compile as D code, though. If this is not the case, you can manually override the expression written to the D proxy
module using the $dconstvalue directive, passing the new value as parameter.

For enums, again $dconstvalue can be used to override the value of an enum item if the initializer should not compile in D.
$dmethodmodifiers

This directive can be used to override the modifiers for a proxy function. For instance, you could make a public C++ member function private in D like this:

%dmethodmodifiers A::foo "private";

%inline %{

struct A {
void foo();

}i

%}

24.5 Pragmas

There are a few SWIG pragmas specific to the D module, which you can use to influence the D code SWIG generates:
$pragma(d) imdmodulecode

The passed text (D code) is copied verbatim to the intermediary D module. For example, it can be (and is, internally) used to emit additional private helper code for the use by proxy
typemaps.

$pragma(d) imdmoduleimports

Additional code to be emitted to the imports section of the intermediary D module (the $importtype macro can be used here). You probably want to use this in conjunction with the
imdmodulecode pragma.

$pragma(d) proxydmodulecode

Just like proxydmodulecode, the argument is copied to the proxy D module (if SWIG is in split proxy mode and/or the nspace feature is used, it is emitted to the main proxy D module
only).

24.4 Other D code control features 225

SWIG-4.2 Documentation

$pragma(d) globalproxyimports

The D module currently does not support specifying dependencies on external modules (e.g. from the standard library) for the D typemaps. To add the import statements to the proxy
modules (resp. to all proxy modules if in split proxy mode), you can use the globalproxyimports directive.

For example:

$typemap(din) char[] "($dinput ? tango.stdc.stringz.toStringz($dinput) : null)"
$pragma(d) globalproxyimports = "static import tango.stdc.stringz;";

$pragma(d) wrapperloadercode

The D code for loading the wrapper library (it is copied to the intermediary D module). The $wrapperloaderbindcode variable is replaced by the list of commands for binding the
functions from the wrapper library to the symbols in the intermediary D module.

Each time this pragma is specified, the previous value is overwritten.
$pragma(d) wrapperloaderbindcommand

The D command to use for binding the wrapper functions from the C/C++ library to the symbols in the intermediary D module. The $function variable contains the name of the D
function in the wrap module, the $symbol variable is replaced by the name of the symbol in the library.

Each time this pragma is specified, the previous value is overwritten.
24.6 D Exceptions

Out of the box, C++ exceptions are fundamentally incompatible to their equivalent in the D world and cannot simply be propagated to a calling D method. There is, however, an easy way to
solve this problem: Just catch the exception in the C/C++ wrapper layer, pass the contents to D, and make the wrapper code rethrow the exception in the D world.

The implementation details of this are a bit crude, but the SWIG D module automatically takes care of this, as long as it is able to detect that an exception could potentially be thrown (e.g.
because the C++ method has a throw(. . .) exception specification).

As this feature is implemented in exactly the same way it is for C#, please see the C# documentation for a more detailed explanation.
24.7 D Directors

When the directors feature is activated, SWIG generates extra code on both the C++ and the D side to enable cross-language polymorphism. Essentially, this means that if you subclass a
proxy class in D, C++ code can access any overridden virtual methods just as if you created a derived class in C++.

There is no D specific documentation yet, but the way the feature is implemented is very similar to how it is done in Java and C#.
24.8 Other features

24.8.1 Extended namespace support (nspace)

By default, SWIG flattens all C++ namespaces into a single target language namespace, but as for Java and C#, the nspace feature is supported for D. If it is active, C++ namespaces are

mapped to D packages/modules. Note, however, that like for the other languages, free variables and functions are not supported yet; currently, they are all allows written to the main proxy D
module.

24.8.2 Native pointer support

Contrary to many of the scripting languages supported by SWIG, D fully supports C-style pointers. The D module thus includes a custom mechanism to wrap C pointers directly as D pointers
where applicable, that is, if the type that is pointed to is represented the same in C and D (on the bit-level), dubbed a primitive type below.

Central to this custom pointer handling scheme are two typemap attributes: the cprimitive attribute on the dtype typemap and the nativepointer attribute on all the typemaps which
influence the D side of the code (dtype, din, dout, ...). When a D typemap is looked up, the following happens behind the scenes:

First, the matching typemap is determined by the usual typemap lookup rules. Then, it is checked if the result has the nativepointer attribute set. If it is present, it means that its value
should replace the typemap value if and only ifthe actual type the typemap is looked up for is a primitive type, a pointer to a primitive type (through an arbitrary level of indirections), or a
function pointer with only primitive types in its signature.

To determine if a type should be considered primitive, thecprimitive attribute on its dtype attribute is used. For example, the dtype typemap for float has cprimitive="1", so the
code from the nativepointer attribute is taken into account e.g. for £loat ** or the function pointer £loat (*)(float *).

24.8.3 Operator overloading
The D module comes with basic operator overloading support. There are, however, a few limitations arising from conceptual differences between C++ and D:
The first key difference is that C++ supports free functions as operators (along with argument-dependent lookup), while D requires operators to be member functions of the class they are
operating on. SWIG can only automatically generate wrapping code for member function operators; if you want to use operators defined as free functions in D, you need to handle them

manually.

Another set of differences between C++ and D concerns individual operators. For example, there are quite a few operators which are overloadable in C++, but not in D, for example && and | |
, but also !, and postfix increment/decrement operators (see the D documentation for details).

There are also some cases where the operators can be translated to D, but the differences in the implementation details are big enough that a rather involved scheme would be required for
automatic wrapping them, which has not been implemented yet. This affects, for example, the array subscript operator, [], in combination with assignments - while operator [] in C++
simply returns a reference which is then written to, D resorts to a separate opIndexAssign method -, or implicit casting (which was introduced in D2 via alias this). Despite the lack of
automatic support, manually handling these cases should be perfectly possible.

24.8.4 Running the test-suite

As with any other language, the SWIG test-suite can be built for D using the *~d-test-suite targets of the top-level Makefile.

Note: If you want to use GDC on Linux or another platform which requires you to link 1ibd1l for dynamically loading the shared library, you might have to add -1d1 manually to the
d_compile target in Examples/Makefile, because GDC does not currently honor the pragma(1ib, ...) statement.

24.9 D Typemap examples

There are no D-specific typemap examples yet. However, with the above name comparison table, you should be able to get an idea what can be done by looking at the corresponding C#
section.

24.10 Work in progress and planned features

There are a couple of features which are not implemented yet, but would be very useful and might be added in the near future:

« Static linking: Currently, the C wrapper code is compiled into a dynamic library, out of which the symbol addresses are looked up at runtime by the D part. If statically linking the different

24.6 D Exceptions 226

https://www.digitalmars.com/d/2.0/operatoroverloading.html

SWIG-4.2 Documentation

languages into one binary was supported, a tool-chain capable of performing IPO at link time could inline the wrapping code, effectively reducing the overhead for simple calls to zero.
« C array handling: Many data structures in some C/C++ libraries contain array containing of a pointer to the first element and the element count. Currently, one must manually writing
wrapper code to be able to access these from D. It should be possible to add a set of SWIG macros to semi-automatically generate conversion code.

Some generated code might also be a bit rough around the edges, particularly in the following areas:

« Memory management: Although the currently generated wrapper code works fine with regard to the GC for the test-suite, there might be issues coming up in real-world multi-threaded
usage.

« D2 support. Originally, the module has been developed for the use with D1, D2/Phobos support has been added in later. The basic features should work equally well for both, but there
could be issues concerning const-correctness etc.

25 SWIG and Go

« Overview
« Examples
« Running SWIG with Go

o Go-specific Commandline Options

o Generated Wrapper Files
« A tour of basic C/C++ wrapping

o Go Package Name
Go Names
Go Constants
Go Enumerations
Go Classes

= Go Class Memory Management
= Go Class Inheritance

Go Templates
Go and C/C++ Threads
Go and C++ Exceptions
Go Director Classes
Example C++ code
Enable director feature
Constructor and destructor
Override virtual methods
Call base methods
Subclass via embedding
Memory management with runtime.SetFinalizer
Complete FooBarGo example class

© o o o

© o o o

o Default Go primitive type mappings
o Output arguments

o Adding additional go code

o Go typemaps

This chapter describes SWIG's support of Go. For more information on the Go programming language see golang.org.
25.1 Overview

Go does not support direct calling of functions written in C/C++. The cgo program may be used to generate wrappers to call C code from Go, but there is no convenient way to call C++ code.
SWIG fills this gap.

There are (at least) two different Go compilers. The first is the gc compiler of the Go distribution, normally invoked via thego tool. SWIG supports the gc compiler version 1.2 or later. The
second Go compiler is the gccgo compiler, which is a frontend to the GCC compiler suite. The interface to C/C++ code is completely different for the two Go compilers. SWIG supports both Go
compilers, selected by the ~gccgo command line option.

Go is a type-safe compiled language and the wrapper code generated by SWIG is type-safe as well. In case of type issues the build will fail and hence SWIG's runtime library and runtime type
checking are not used.
25.2 Examples

Working examples can be found in the SWIG source tree .

Please note that the examples in the SWIG source tree use makefiles with the .i SWIG interface file extension for backwards compatibility with Go 1.
25.3 Running SWIG with Go

Most Go programs are built using the go tool. Since Go 1.1 the go tool has support for SWIG. To use it, give your SWIG interface file the extension .swig (for C code) or .swigcxx (for C++
code). Put that file in a GOPATH/src directory as usual for Go sources. Put other C/C++ code in the same directory with extensions of .c and .cxx. The go build and go install commands
will automatically run SWIG for you and compile the generated wrapper code. To check the SWIG command line options the go tool uses run go build -x. To access the automatically
generated files run go build -work. You'l find the files under the temporary WORK directory.

To manually generate and compile C/C++ wrapper code for Go, use the -go option with SWIG. By default SWIG will generate code for the Go compiler of the Go distribution. To generate
code for gccgo, you should also use the —~gccgo option.

By default SWIG will generate files that can be used directly by go build. This requires Go 1.2 or later. Put your SWIG interface file in a directory under GOPATH/src, and give it a name that
does not end in the .swig or .swigcxx extension. Typically the SWIG interface file extension is .i in this case.

% swig -go example.i
% go install

You will now have a Go package that you can import from other Go packages as usual.
25.3.1 Go-specific Commandline Options

These are the command line options for SWIG's Go module. They can also be seen by using:

swig -go -help

Go-
specific
options
-cgo Generate files to be used as input for the Go cgo tool. This is the default.
-no-cgo This option is no longer supported.

25.1 Overview

https://golang.org/
https://golang.org/cmd/cgo/
https://golang.org/doc/install
https://golang.org/cmd/go/
https://golang.org/doc/install/gccgo
https://github.com/swig/swig/tree/master/Examples/go
https://golang.org/cmd/go/

SWIG-4.2 Documentation

Set the size for the Go typeint . This controls the size that the C/C++ code expects to see. The <s> argument should be 32 or 64. This option was required during the transition
from Go 1.0 to Go 1.1, as the size of int on 64-bit x86 systems changed between those releases (from 32 bits to 64 bits). It was made optional in SWIG 4.1.0 and if not specified
SWIG will assume that the size of int is the size of a C pointer.

-gccgo Generate code for gccgo. The default is to generate code for the Go compiler of the Go distribution.

-intgosize
<S>

;ﬁ]f;zge Set the name of the Go package to <name>. The default package name is the SWIG module name.

_use-shlib Tell SWIG to emit code that uses a shared library. This is only meaningful for the Go compiler of the Go distribution, which needs to know at compile time whether a shared library
will be used.
Set the runtime name of the shared library that the dynamic linker should include at runtime. The default is the package name with ".so" appended. This is only used when

-soname . ¥ I . . N . X N N .

<name> gengratlng code for.the Gp compiler of the Go distribution; when using gccgo, the equivalent name will be taken from the —~soname option passed to the linker. Using this option
implies the -use-shlib option.

-go-

pkgpath When generating code for gccgo, set the pkgpath to use. This corresponds to the -fgo-pkgpath option to gccgo.

<pkgpath>

;gpc;girfllx When generating code for gccgo, set the prefix to use. This corresponds to the -fgo-prefix option to gccgo. If ~go-pkgpath is used, ~go-prefix will be ignored.

7'222“ A prefix to add when turning a %import prefix in the SWIG interface file into an import statement in the Go file. For example, with -import-prefix mymodule, a SWIG interface

Eprefix> file #import mypackage will become a Go import statement import "mymodule/mypackage".

25.3.2 Generated Wrapper Files
SWIG will generate the following files when generating wrapper code:
« MODULE.go will contain the Go functions that your Go code will call. These functions will be wrappers for the C++ functions defined by your module. This file should, of course, be
compiled with the Go compiler.
+ MODULE_wrap.c or MODULE_wrap.cxx will contain C/C++ functions will be invoked by the Go wrapper code. This file should be compiled with the usual C or C++ compiler.

« MODULE_wrap.h will be generated if you use the directors feature. It provides a definition of the generated C++ director classes. It is generally not necessary to use this file, but in some
special cases it may be helpful to include it in your code, compiled with the usual C or C++ compiler.

25.4 A tour of basic C/C++ wrapping

By default, SWIG attempts to build a natural Go interface to your C/C++ code. However, the languages are somewhat different, so some modifications have to occur. This section briefly
covers the essential aspects of this wrapping.

25.4.1 Go Package Name

All Go source code lives in a package. The name of this package will default to the name of the module from SWIG's $module directive. You may override this by using SWIG's -package
command line option.

25.4.2 Go Names

In Go, a function is only visible outside the current package if the first letter of the name is uppercase. This is quite different from C/C++. Because of this, C/C++ names are modified when
generating the Go interface: the first letter is forced to be uppercase if it is not already. This affects the names of functions, methods, variables, constants, enums, and classes.

C/C++ variables are wrapped with setter and getter functions in Go. First the first letter of the variable name will be forced to uppercase, and then Get or Set will be prepended. For example, if
the C/C++ variable is called var, then SWIG will define the functions Getvar and Setvar. If a variable is declared as const, or if SWIG's 2 immutable directive is used for the variable, then
only the getter will be defined.

C++ classes will be discussed further below. Here we'll note that the first letter of the class name will be forced to uppercase to give the name of a type in Go. A constructor will be named New
followed by that name, and the destructor will be named Delete followed by that name.

25.4.3 Go Constants
C/C++ constants created via #define or the $constant directive become Go constants, declared with a const declaration.
25.4.4 Go Enumerations

C/C++ enumeration types will cause SWIG to define an integer type with the name of the enumeration (with first letter forced to uppercase as usual). The values of the enumeration will
become variables in Go; code should avoid modifying those variables.

25.4.5 Go Classes
Go has interfaces, methods and inheritance, but it does not have classes in the same sense as C++. This sections describes how SWIG represents C++ classes represented in Go.

For a C++ class className, SWIG will define two types in Go: an underlying type, which will just hold a pointer to the C++ type, and an interface type. The interface type will be named
ClassName . SWIG will define a functionNewClassName which will take any constructor arguments and return a value of the interface type ClassName. SWIG will also define a destructor
DeleteClassName.

SWIG will represent any methods of the C++ class as methods on the underlying type, and also as methods of the interface type. Thus C++ methods may be invoked directly using the usual
val.MethodName syntax. Public members of the C++ class will be given getter and setter functions defined as methods of the class.

SWIG will represent static methods of C++ classes as ordinary Go functions. SWIG will use names like ClassNameMethodName. SWIG will give static members getter and setter functions
with names like GetClassName_VarName

Given a value of the interface type, Go code can retrieve the pointer to the C++ type by calling the swigeptr method. This will return a value of type SwigcptrClassName, which is just a
name for uintptr. A Go type conversion can be used to convert this value to a different C++ type, but note that this conversion will not be type checked and is essentially equivalent to
reinterpret_cast. This should only be used for very special cases, such as where C++ would use a dynamic_cast.

Note that C++ pointers to compound objects are represented in go as objects themselves, not as go pointers. So, for example, if you wrap the following function:

class MyClass {

int MyMethod();

static MyClass *MyFactoryFunction();
}i

You will get go code that looks like this:

type MyClass interface {
Swigcptr() uintptr
SwigIsMyClass()
MyMethod() int

}

func MyClassMyFactoryFunction() MyClass {

25.4 A tour of basic C/C++ wrapping

SWIG-4.2 Documentation

// swig magic here

}

Note that the factory function does not return a go pointer; it actually returns a go interface. If the returned pointer can be null, you can check for this by calling the Swigcptr() method.
25.4.5.1 Go Class Memory Management

Calling NewClassName for a C++ class ClassName will allocate memory using the C++ memory allocator. This memory will not be automatically freed by Go's garbage collector as the object
ownership is not tracked. When you are done with the C++ object you must free it using DeleteClassName.

The most Go idiomatic way to manage the memory for some C++ class is to call NewClassName followed by a defer of the DeleteClassName call. Using defer ensures that the memory
of the C++ object is freed as soon as the function containing the defer statement returns. Furthermore defer works great for short-lived objects and fits nicely C++'s RAIl idiom. Example:

func UseClassName(...) ... {
o := NewClassName(...)
defer DeleteClassName(o0)
// Use the ClassName object
return ...

With increasing complexity, especially complex C++ object hierarchies, the correct placement of defer statements becomes harder and harder as C++ objects need to be freed in the correct
order. This problem can be eased by keeping a C++ object function local so that it is only available to the function that creates a C++ object and functions called by this function. Example:

func WithClassName(constructor args, f func(ClassName, ...interface{}) error, data ...interface{}) error {
o := NewClassName (constructor args)
defer DeleteClassName(o)
return f(o, data...)

}

func UseClassName(o ClassName, data ...interface{}) (err error) {
// Use the ClassName object and additional data and return error.

}

func main() {
WithClassName(constructor args, UseClassName, additional data)

}

Using defer has limitations though, especially when it comes to long-lived C++ objects whose lifetimes are hard to predict. For such C++ objects a common technique is to store the C++
object into a Go object, and to use the Go function runtime.SetFinalizer to add a finalizer which frees the C++ object when the Go object is freed. It is strongly recommended to read the
runtime.SetFinalizer documentation before using this technique to understand the runtime.SetFinalizer limitations.

Common pitfalls with runtime.SetFinalizer are:

« If a hierarchy of C++ objects will be automatically freed by Go finalizers then the Go objects that store the C++ objects need to replicate the hierarchy of the C++ objects to prevent that
C++ objects are freed prematurely while other C++ objects still rely on them.
« The usage of Go finalizers is problematic with C++'s RAIl idiom as it isn't predictable when the finalizer will run and this might require a Close or Delete method to be added the Go

object that stores a C++ object to mitigate.

runtime.SetFinalizer Example:

import (
"runtime"
"wrap" // SWIG generated wrapper code

)

type GoClassName struct {
wcn wrap.ClassName

}

func NewGoClassName() *GoClassName {
o := &GoClassName{wcn: wrap.NewClassName()}
runtime.SetFinalizer (o, deleteGoClassName)
return o

}

func deleteGoClassName(o *GoClassName) {
// Runs typically in a different OS thread!
wrap.DeleteClassName(o.wcn)
o.wecn = nil

}

func (o *GoClassName) Close() {
// If the C++ object has a Close method.
o.wcn.Close()

// If the GoClassName object is no longer in an usable state.
runtime.SetFinalizer(o, nil) // Remove finalizer.
deleteGoClassName() // Free the C++ object.

25.4.5.2 Go Class Inheritance

C++ class inheritance is automatically represented in Go due to its use of interfaces. The interface for a child class will be a superset of the interface of its parent class. Thus a value of the
child class type in Go may be passed to a function which expects the parent class. Doing the reverse will require an explicit type assertion, which will be checked dynamically.

25.4.6 Go Templates
In order to use C++ templates in Go, you must tell SWIG to create wrappers for a particular template instantiation. To do this, use the $template directive.
25.4.7 Go and C/C++ Threads
C and C++ code can use operating system threads and thread local storage. Go code uses goroutines, which are multiplexed onto operating system threads. This multiplexing means that Go

code can change to run on a different thread at any time. C/C++ code, on the other hand, may assume that it runs on a single thread; this is true in particular if the C/C++ code uses thread
local storage.

25.4 A tour of basic C/C++ wrapping 229

https://golang.org/doc/effective_go.html#defer
https://golang.org/pkg/runtime/#SetFinalizer

SWIG-4.2 Documentation

In order to use Go code with C/C++ code that expects to run on a single thread, the Go code must call the runtime . LockOSThread function to lock the goroutine onto a single thread.

25.4.8 Go and C++ Exceptions

C++ exceptions do not interoperate with Go code. Attempts to throw C++ exceptions through a Go caller are unreliable: in many cases the C++ exception handler will be unable to unwind the
stack, and the program will crash. The only safe way to handle C++ exceptions is to catch them in C++ before returning to Go.

25.4.9 Go Director Classes

SWIG's director feature permits a Go type to act as the subclass of a C++ class. This is complicated by the fact that C++ and Go define inheritance differently. SWIG normally represents the
C++ class inheritance automatically in Go via interfaces but with a Go type representing a subclass of a C++ class some manual work is necessary.

This subchapter gives a step by step guide how to properly subclass a C++ class with a Go type. In general it is strongly recommended to follow this guide completely to avoid common pitfalls
with directors in Go.

25.4.9.1 Example C++ code

The step by step guide is based on two example C++ classes. FooBarAbstract is an abstract C++ class and the FooBarCpp class inherits from it. This guide explains how to implement a
FooBarGo class similar to the FooBarCpp class.

FooBarAbstract abstract C++ class:

class FooBarAbstract
{
public:

FooBarAbstract() {};

virtual ~FooBarAbstract() {};

std::string FooBar() {
return this->Foo() + ", " + this->Bar();
Yi

protected:
virtual std::string Foo() {
return "Foo";
}i

virtual std::string Bar() = 0;
}i

FooBarCpp C++ class:

class FooBarCpp : public FooBarAbstract
{
protected:
virtual std::string Foo() {
return "C++ " + FooBarAbstract::Foo();

}

virtual std::string Bar() {
return "C++ Bar";
}
Yi

Returned string by the FooBarCpp: : FooBar method is:

C++ Foo, C++ Bar

The complete example, including the FooBarGoo class implementation, can be found in the end of the guide.
25.4.9.2 Enable director feature

The director feature is disabled by default. To use directors you must make two changes to the interface file. First, add the "directors" option to the %module directive, like this:

gmodule (directors="1") modulename

Second, you must use the %feature("director") directive to tell SWIG which classes should get directors. In the example the FooBarAbstract class needs the director feature enabled so that
the FooBarGo class can inherit from it, like this:

%feature("director") FooBarAbstract;

For a more detailed documentation of the director feature and how to enable or disable it for specific classes and virtual methods see SWIG's Java documentation on directors.
25.4.9.3 Constructor and destructor

SWIG creates an additional set of constructor and destructor functions once the director feature has been enabled for a C++ class. NewDirectorClassName allows overriding virtual
methods on the new object instance and DeleteDirectorClassName needs to be used to free a director object instance created with NewDirectorClassName. More on overriding virtual
methods follows later in this guide under overriding virtual methods.

The default constructor and destructor functions NewClassName and DeleteClassName can still be used as before so that existing code doesn't break just because the director feature has
been enabled for a C++ class. The behavior is undefined if the default and director constructor and destructor functions get mixed and so great care needs to be taken that only one of the
constructor and destructor function pairs is used for any object instance. Both constructor functions, the default and the director one, return the same interface type. This makes it potentially
hard to know which destructor function, the default or the director one, needs to be called to delete an object instance.

In theory the DirectorInterface method could be used to determine if an object instance was created via NewDirectorClassName:

if o.DirectorInterface() != nil {
DeleteDirectorClassName (o)

} else {
DeleteClassName (o)

}

25.4 A tour of basic C/C++ wrapping 230

https://pkg.go.dev/runtime#LockOSThread

SWIG-4.2 Documentation

In practice it is strongly recommended to embed a director object instance in a Go struct so that a director object instance will be represented as a distinct Go type that subclasses a C++
class. For this Go type custom constructor and destructor functions take care of the director constructor and destructor function calls and the resulting Go class will appear to the user as any
other SWIG wrapped C++ class. More on properly subclassing a C++ class follows later in this guide under subclass via embedding .

25.4.9.4 Override virtual methods

In order to override virtual methods on a C++ class with Go methods the NewDirectorClassName constructor functions receives aDirectorInterface argument. The methods in the
DirectorInterface are a subset of the public and protected virtual methods of the C++ class. Virtual methods that have a final specifier are unsurprisingly excluded. If the
DirectorInterface contains a method with a matching signature to a virtual method of the C++ class then the virtual C++ method will be overwritten with the Go method. As Go doesn't
support protected methods all overridden protected virtual C++ methods will be public in Go.

As an example see part of the FooBarGo class:

type overwrittenMethodsOnFooBarAbstract struct {
fb FooBarAbstract
}

func (om *overwrittenMethodsOnFooBarAbstract) Foo() string {

}

func (om *overwrittenMethodsOnFooBarAbstract) Bar() string {

}

func NewFooBarGo() FooBarGo {
om := &overwrittenMethodsOnFooBarAbstract{}
fb := NewDirectorFooBarAbstract (om)
om.fb = fb

The complete example, including the FooBarGoo class implementation, can be found in the end of the guide. In this part of the example the virtual methods FooBarAbstract: : Foo and
FooBarAbstract: :Bar have been overwritten with Go methods similarly to how the FooBarAbstract virtual methods are overwritten by theFooBarCpp class.

The DirectorInterface in the example is implemented by theoverwrittenMethodsOnFooBarAbstract Go struct type. A pointer to aoverwrittenMethodsOnFooBarAbstract
struct instance will be given to the NewDirectorFooBarAbstract constructor function. The constructor return value implements the FooBarAbstract interface.
overwrittenMethodsOnFooBarAbstract could in theory be any Go type but in practice a struct is used as it typically contains at least a value of the C++ class interface so that the
overwritten methods can use the rest of the C++ class. If the FooBarGo class would receive additional constructor arguments then these would also typically be stored in the
overwrittenMethodsOnFooBarAbstract struct so that they can be used by the Go methods.

25.4.9.5 Call base methods

Often a virtual method will be overwritten to extend the original behavior of the method in the base class. This is also the case for the FooBarCpp: : Foo method of the example code:

virtual std::string Foo() {
return "C++ " + FooBarAbstract::Foo();

}

To use base methods the DirectorClassNameMethodName wrapper functions are automatically generated by SWIG for public and protected virtual methods. The FooBarGo.Foo
implementation in the example looks like this:

func (om *overwrittenMethodsOnFooBarAbstract) Foo() string {
return "Go " + DirectorFooBarAbstractFoo(om.fb)

}

The complete example, including the FooBarGoo class implementation, can be found in the end of the guide.
25.4.9.6 Subclass via embedding

As previously mentioned in this guide the default and director constructor functions return the same interface type. To properly subclass a C++ class with a Go type the director object instance
returned by the NewDirectorClassName constructor function should be embedded into a Go struct so that it represents a distinct but compatible type in Go's type system. This Go struct
should be private and the constructor and destructor functions should instead work with a public interface type so that the Go class that subclasses a C++ class can be used as a compatible
drop in.

The subclassing part of the FooBarGo class for an example looks like this:

type FooBarGo interface {
FooBarAbstract
deleteFooBarAbstract()
IsFooBarGo()

}

type fooBarGo struct {
FooBarAbstract
}

func (fbgs *fooBarGo) deleteFooBarAbstract() {
DeleteDirectorFooBarAbstract (fbgs.FooBarAbstract)

}

func (fbgs *fooBarGo) IsFooBarGo() {}

func NewFooBarGo() FooBarGo {

om := &overwrittenMethodsOnFooBarAbstract{}
fb := NewDirectorFooBarAbstract (om)
om.fb = fb

return &fooBarGo{FooBarAbstract: fb}
}

func DeleteFooBarGo(fbg FooBarGo) {
fbg.deleteFooBarAbstract()
}

25.4 A tour of basic C/C++ wrapping

SWIG-4.2 Documentation

The complete example, including the FooBarGoo class implementation, can be found in the end of the guide. In this part of the example the privatefooBarGo struct embeds
FooBarAbstract which lets the fooBarGo Go type "inherit" all the methods of theFooBarAbstract C++ class by means of embedding. The publicFooBarGo interface type includes the
FooBarAbstract interface and hence FooBarGo can be used as a drop in replacement for FooBarAbstract while the reverse isn't possible and would raise a compile time error.
Furthermore the constructor and destructor functions NewFooBarGo and DeleteFooBarGo take care of all the director specifics and to the user the class appears as any other SWIG
wrapped C++ class.

25.4.9.7 Memory management with runtime.SetFinalizer

In general all guidelines for C++ class memory management apply as well to director classes. One often overlooked limitation with runtime.SetFinalizer is that a finalizer doesn't run in
case of a cycle and director classes typically have a cycle. The cycle in the FooBarGo class is here:

type overwrittenMethodsOnFooBarAbstract struct {
fb FooBarAbstract

}
func NewFooBarGo() FooBarGo {
om := &overwrittenMethodsOnFooBarAbstract{}
fb := NewDirectorFooBarAbstract(om) // fb.v = om

om.fb = fb // Backlink causes cycle as fb.v om!

In order to be able to use runtime.SetFinalizer nevertheless the finalizer needs to be set on something that isn't in a cycle and that references the director object instance. In the
FooBarGo class example theFooBarAbstract director instance can be automatically deleted by setting the finalizer on fooBarGo:

type fooBarGo struct {
FooBarAbstract

type overwrittenMethodsOnFooBarAbstract struct {
fb FooBarAbstract

}

func NewFooBarGo() FooBarGo {
om := &overwrittenMethodsOnFooBarAbstract{}
fb := NewDirectorFooBarAbstract (om)

om.fb = fb // Backlink causes cycle as fb.v = om!

fbgs := &fooBarGo{FooBarAbstract: fb}
runtime.SetFinalizer(fbgs, FooBarGo.deleteFooBarAbstract)
return fbgs

Furthermore if runtime.SetFinalizer is in use either theDeleteClassName destructor function needs to be removed or thefooBarGo struct needs additional data to prevent double
deletion. Please read the C++ class memory managementsubchapter before using runtime.SetFinalizer to know all of its gotchas.

25.4.9.8 Complete FooBarGo example class

The complete and annotated FooBarGo class looks like this:

// FooBarGo is a superset of FooBarAbstract and hence FooBarGo can be used as a
// drop in replacement for FooBarAbstract but the reverse causes a compile time
// error.
type FooBarGo interface {

FooBarAbstract

deleteFooBarAbstract()

IsFooBarGo()
}

// Via embedding fooBarGo "inherits" all methods of FooBarAbstract.
type fooBarGo struct {
FooBarAbstract

func (fbgs *fooBarGo) deleteFooBarAbstract() {
DeleteDirectorFooBarAbstract (fbgs.FooBarAbstract)
}

// The IsFooBarGo method ensures that FooBarGo is a superset of FooBarAbstract.
// This is also how the class hierarchy gets represented by the SWIG generated
// wrapper code. For an instance FooBarCpp has the IsFooBarAbstract and

// IsFooBarCpp methods.

func (fbgs *fooBarGo) IsFooBarGo() {}

// Go type that defines the DirectorInterface. It contains the Foo and Bar
// methods that overwrite the respective virtual C++ methods on FooBarAbstract.
type overwrittenMethodsOnFooBarAbstract struct {
// Backlink to FooBarAbstract so that the rest of the class can be used by
// the overridden methods.
fb FooBarAbstract

// If additional constructor arguments have been given they are typically
// stored here so that the overridden methods can use them.

}

func (om *overwrittenMethodsOnFooBarAbstract) Foo() string {
// DirectorFooBarAbstractFoo calls the base method FooBarAbstract::Foo.
return "Go " + DirectorFooBarAbstractFoo(om.fb)

}

func (om *overwrittenMethodsOnFooBarAbstract) Bar() string {
return "Go Bar"

func NewFooBarGo() FooBarGo {
// Instantiate FooBarAbstract with selected methods overridden. The methods
// that will be overwritten are defined on

25.4 A tour of basic C/C++ wrapping

232

SWIG-4.2 Documentation

// overwrittenMethodsOnFooBarAbstract and have a compatible signature to the
// respective virtual C++ methods. Furthermore additional constructor

// arguments will be typically stored in the

// overwrittenMethodsOnFooBarAbstract struct.

om := &overwrittenMethodsOnFooBarAbstract{}

fb := NewDirectorFooBarAbstract (om)

om.fb = fb // Backlink causes cycle as fb.v = om!

fbgs := &fooBarGo{FooBarAbstract: fb}

// The memory of the FooBarAbstract director object instance can be

// automatically freed once the FooBarGo instance is garbage collected by

// uncommenting the following line. Please make sure to understand the

// runtime.SetFinalizer specific gotchas before doing this. Furthermore

// DeleteFooBarGo should be deleted if a finalizer is in use or the fooBarGo
// struct needs additional data to prevent double deletion.

// runtime.SetFinalizer(fbgs, FooBarGo.deleteFooBarAbstract)

return fbgs

}

// Recommended to be removed if runtime.SetFinalizer is in use.
func DeleteFooBarGo(fbg FooBarGo) {

fbg.deleteFooBarAbstract()
}

Returned string by the FooBarGo . FooBar method is:

Go Foo, Go Bar

For comparison the FooBarCpp class looks like this:

class FooBarCpp : public FooBarAbstract
{
protected:
virtual std::string Foo() {
return "C++ " + FooBarAbstract::Foo();

}

virtual std::string Bar() {
return "C++ Bar";
}
Yi

For comparison the returned string by the FooBarCpp: : FooBar method is:

C++ Foo, C++ Bar

The complete source of this example can be found under SWIG/Examples/go/director/.
25.4.10 Default Go primitive type mappings

The following table lists the default type mapping from C/C++ to Go. This table will tell you which Go type to expect for a function which uses a given C/C++ type.

C/C++ type Go type
bool bool
char byte
signed char int8
unsigned char byte
short int16

unsigned short uint16

int int
unsigned int uint
long int64
unsigned long uint64
long long int64
unsigned long Lint64
long

float [float32
double [float64
zgg: il string

Note that SWIG wraps the C char type as a character. Pointers and arrays of this type are wrapped as strings. The signed char type can be used if you want to treatchar as a signed
number rather than a character. Also note that all const references to primitive types are treated as if they are passed by value.

These type mappings are defined by the "gotype" typemap. You may change that typemap, or add new values, to control how C/C++ types are mapped into Go types.
25.4.11 Output arguments

Because of limitations in the way output arguments are processed in swig, a function with output arguments will not have multiple return values. Instead, you must pass a pointer into the C++
function to tell it where to store the output value. In go, you supply a slice in the place of the output argument.

For example, suppose you were trying to wrap the modf() function in the C math library which splits x into integral and fractional parts (and returns the integer part in one of its parameters):

double modf(double x, double *ip);

You could wrap it with SWIG as follows:

%include <typemaps.i>

25.4 A tour of basic C/C++ wrapping 233

https://github.com/swig/swig/tree/master/Examples/go/director

SWIG-4.2 Documentation

double modf(double x, double *OUTPUT);

or you can use the $apply directive:

%include <typemaps.i>
%apply double *OUTPUT { double *ip };
double modf(double x, double *ip);

In Go you would use it like this:

ptr := []float64{0.0}
fraction := modulename.Modf (5.0, ptr)

Since this is ugly, you may want to wrap the swig-generated API with some additional functions written in go that hide the ugly details.

There are no char *OUTPUT typemaps. However you can apply the signed char * typemaps instead:

%include <typemaps.i>
%apply signed char *OUTPUT {char *output};
void f(char *output);

25.4.12 Adding additional go code

Often the APIs generated by swig are not very natural in go, especially if there are output arguments. You can insert additional go wrapping code to add new APIs with
$insert(go_wrapper), like this

%include <typemaps.i>

// Change name of what swig generates to Wrapped modf. This function will
// have the following signature in go:

// func Wrapped modf (float64, []float64) float64

$rename (wrapped_modf) modf(double x, double *ip);

%apply double *OUTPUT { double *ip };
double modf(double x, double *ip);

%$insert(go_wrapper) %{

// The improved go interface to this function, which has two return values,
// in the more natural go idiom:
func Modf(x float64) (fracPart float64, intPart float64) {

ip := []float64{0.0}

fracPart = Wrapped_modf(x, ip)

intPart = ip[0]

return

%}

For classes, since swig generates an interface, you can add additional methods by defining another interface that includes the swig-generated interface. For example,

%rename (Wrapped MyClass) MyClass;
$rename(Wrapped GetAvValue) MyClass::GetAValue(int *x);
%apply int *OUTPUT { int *x };

class MyClass {

public:
MyClass();
int AFineMethod(const char *arg); // Swig's wrapping is fine for this one.
bool GetAvalue(int *x);

}i

%$insert(go_wrapper) %{

type MyClass interface {
Wrapped_MyClass
GetAvalue() (int, bool)

}

func (arg SwigcptrWrapped MyClass) GetAValue() (int, bool) {
ip := [1int{0}
ok := arg.Wrapped_GetAValue(ip)
return ip[0], ok

}

%}

Of course, if you have to rewrite most of the methods, instead of just a few, then you might as well define your own struct that includes the swig-wrapped object, instead of adding methods to

the swig-generated object.

If you need to import other go packages, you can do this withtgo_import. For example,

%$go_import("fmt", _ "unusedPackage", rp "renamed/package")
%insert(go_wrapper) %{

func foo() {
fmt.Println("Some string:", rp.GetString())
}

// Importing the same package twice is permitted,
// Go code will be generated with only the first instance of the import.

25.4 A tour of basic C/C++ wrapping

234

SWIG-4.2 Documentation

%go_import ("fmt")

%$insert(go_wrapper) %{

func bar() {
fmt.Println("Hello world!")

}

%}

25.4.13 Go typemaps

You can use the $typemap directive to modify SWIG's default wrapping behavior for specific C/C++ types. You need to be familiar with the material in the general "Typemaps" chapter. That
chapter explains how to define a typemap. This section describes some specific typemaps used for Go.

In general type conversion code may be written either in C/C++ or in Go. The choice to make normally depends on where memory should be allocated. To allocate memory controlled by the
Go garbage collector, write Go code. To allocate memory in the C/C++ heap, write C code.

Typemap ||Description
gotype The Go type to use for a C++ type. This type will appear in the generated Go wrapper function. If this is not defined SWIG will use a default as described above.

A /An intermediate Go type used by the "goin", "goout", "godirectorin”, and "godirectorout" typemaps. If this typemap is not defined for a C/C++ type, the gotype typemap will be
imtype L . .
used. This is useful when gotype is best converted to C/C++ using Go code.
oin Go code to convert from gotype to imtype when calling a C/C++ function. SWIG will then internally convert imtype to a C/C++ type and pass it down. If this is not defined, or is
the empty string, no conversion is done.
in C/C++ code to convert the internally generated C/C++ type, based on imtype, into the C/C++ type that a function call expects. If this is not defined the value will simply be cast
to the desired type.
out C/C++ code to convert the C/C++ type that a function call returns into the internally generated C/C++ type, based on imtype, that will be returned to Go. If this is not defined the
value will simply be cast to the desired type.
goout Go code to convert a value returned from a C/C++ function from imtype to gotype. If this is not defined, or is the empty string, no conversion is done.
C/C++ code to adjust an argument value when returning from a function. This is called after the real C/C++ function has run. This uses the internally generated C/C++ type,
argout . L . S N N p
based on imtype. This is only useful for a pointer type of some sort. If this is not defined nothing will be done.
Joargout Go code to adjust an argument value when returning from a function. This is called after the real C/C++ function has run. The value will be in imtype. This is only useful for a

pointer type of some sort. If this is not defined, or is the empty string, nothing will be done.

directorin C/C++ code to convert the C/C++ type used to call a director method into the internally generated C/C++ type, based on imtype, that will be passed to Go. If this is not defined
the value will simply be cast to the desired type.

godirectorin ||Go code to convert a value used to call a director method from imtype to gotype. If this is not defined, or is the empty string, no conversion is done.
godirectorout||Go code to convert a value returned from a director method from gotype to imtype. If this is not defined, or is the empty string, no conversion is done.

di C/C++ code to convert a value returned from a director method from the internally generated C/C++ type, based on imtype, into the type that the method should return If this is
irectorout) I -
not defined the value will simply be cast to the desired type.

26 SWIG and Guile

Supported Guile Versions
Meaning of "Module"

0Old GH Guile API
Linkage

o Simple Linkage
o Passive Linkage
o Native Guile Module Linkage
o Old Auto-Loading Guile Module Linkage
o Hobbit4D Linkage
Underscore Folding
Typemaps
Representation of pointers as smobs
o Smobs
o Garbage Collection
Native Guile pointers
Exception Handling
Procedure documentation
Procedures with setters
GOOPS Proxy Classes
o Naming Issues
o Linking

This section details guile-specific support in SWIG.
26.1 Supported Guile Versions

SWIG is known to work with Guile versions 2.0.x, 2.2.x and 3.0.x (these are all tested via Cl). SWIG probably still works with Guile 1.8.x but we're no longer able to regularly test this either in
Cl or by hand. Support for Guile 1.6.x has been dropped (SWIG 2.0.9 was the last version of SWIG to support it).

Note that starting with guile 2.0, the guile sources can be compiled for improved performance. This is currently not tested with swig so your mileage may vary. To be safe set environment
variable GUILE_AUTO_COMPILE to 0 when using swig generated guile code.

26.2 Meaning of "Module"
There are three different concepts of "module” involved, defined separately for SWIG, Guile, and Libtool. To avoid horrible confusion, we explicitly prefix the context, e.g., "guile-module”.

26.3 Old GH Guile API

Guile 1.8 and older could be interfaced using two different api's, the SCM or the GH API. The GH interface to guile is deprecated. Read more about why in the Guile manual.

Support for the guile GH wrapper code generation has been dropped from SWIG. The last version of SWIG that can still generate guile GH wrapper code is 2.0.9. Please use that version if you
really need the GH wrapper code.

26.4 Linkage

Guile support is complicated by a lack of user community cohesiveness, which manifests in multiple shared-library usage conventions. A set of policies implementing a usage convention is
called a linkage.

26.1 Supported Guile Versions

https://www.gnu.org/software/guile/docs/docs-1.6/guile-ref/GH.html#GH

SWIG-4.2 Documentation

26.4.1 Simple Linkage
The default linkage is the simplest; nothing special is done. In this case the function SWIG_init () is exported. Simple linkage can be used in several ways:

« Embedded Guile, no modules. You want to embed a Guile interpreter into your program; all bindings made by SWIG shall show up in the root module. Then call SWIG_init () in the
inner_main() function. See the "simple" and "matrix" examples under Examples/guile.

« Dynamic module mix-in. You want to create a Guile module using define-module, containing both Scheme code and bindings made by SWIG; you want to load the SWIG modules
as shared libraries into Guile.

(define-module (my module))

(define my-so (dynamic-link "./libexample.so"))
(dynamic-call "SWIG_init" my-so) ; make SWIG bindings
;i Scheme definitions can go here

Newer Guile versions provide a shorthand for dynamic-1ink and dynamic-call:

(load-extension "./libexample.so" "SWIG_init")

A more portable approach would be to drop the shared library extension:

(load-extension "./libexample" "SWIG_ init")

You need to explicitly export those bindings made by SWIG that you want to import into other modules:

(export foo bar)

In this example, the procedures foo and bar would be exported. Alternatively, you can export all bindings with the following module-system hack:

(module-map (lambda (sym var)
(module-export! (current-module) (list sym)))
(current-module))

SWIG can also generate this Scheme stub (fromdefine-module up to export) semi-automagically if you pass it the command-line argument -scmstub. The code will be exported in
a file called module.scm in the directory specified by -outdir or the current directory if-outdir is not specified. Since SWIG doesn't know how to load your extension module (with
dynamic-1link or load-extension), you need to supply this information by including a directive like this in the interface file:

%$scheme %{ (load-extension "./libexample.so" "SWIG_init") %}

(The $scheme directive allows inserting arbitrary Scheme code into the generated file module. scm; it is placed between the define-module form and the export form.)

If you want to include several SWIG modules, you would need to rename SWIG_init via a preprocessor define to avoid symbol clashes. For this case, however, passive linkage is available.
26.4.2 Passive Linkage

Passive linkage is just like simple linkage, but it generates an initialization function whose name is derived from the module and package name (see below).

You should use passive linkage rather than simple linkage when you are using multiple modules.
26.4.3 Native Guile Module Linkage

SWIG can also generate wrapper code that does all the Guile module declarations on its own if you pass it the ~-Linkage module command-line option.

The module name is set with the-package and -module command-line options. Suppose you want to define a module with name (my 1ib foo);then you would have to pass the options
-package my/lib -module foo . Note that the last part of the name can also be set via the SWIG directive $module.

You can use this linkage in several ways:

« Embedded Guile with SWIG modules. You want to embed a Guile interpreter into your program; the SWIG bindings shall be put into different modules. Simply call the function
scm_init_my _modules_foo_moduleintheinner_main() function.
« Dynamic Guile modules. You want to load the SWIG modules as shared libraries into Guile; all bindings are automatically put in newly created Guile modules.

(define my-so (dynamic-link "./libfoo"))
;; create new module and put bindings there:
(dynamic-call "scm_init my modules_ foo module" my-so)

Newer Guile versions have a shorthand procedure for this:

(load-extension "./libfoo.so" "scm_init my modules_foo_module")

26.4.4 Old Auto-Loading Guile Module Linkage

Guile used to support an autoloading facility for object-code modules, but this support was deprecated and removed in Guile version 1.4.1. SWIG supported this via option -Linkage
1tdlmod, but this support is no longer useful and was removed in SWIG 4.2.0.

26.4.5 Hobbit4D Linkage

The only other linkage supported at this time creates shared object libraries suitable for use by hobbit's (hobbit4d 1link) guile module. This is called the "hobbit" linkage, and requires also
using the "-package" command line option to set the part of the module name before the last symbol. For example, both command lines:

swig -guile -package my/lib foo.i
swig -guile -package my/lib -module foo foo.i

would create module (my 1ib foo) (assuming in the first case foo.i declares the module to be "foo"). The installed files are my/lib/libfoo.s0.X.Y.Z and friends. This scheme is still very
experimental; the (hobbit4d link) conventions are not well understood.

26.5 Underscore Folding

26.5 Underscore Folding

236

SWIG-4.2 Documentation

Underscores are converted to dashes in identifiers. Guile support may grow an option to inhibit this folding in the future, but no one has complained so far.

You can use the SWIG directive $rename to specify the Guile names of the wrapped functions and variables.
26.6 Typemaps

The Guile module handles all types via typemaps. This information is read from Lib/guile/typemaps.i. Some non-standard typemap substitutions are supported:

« $descriptor expands to a type descriptor for use with the SWIG_NewPointerObj() and SWIG_ConvertPtr functions.
« For pointer types, $ *descriptor expands to a descriptor for the direct base type (i.e., one pointer is stripped), whereas $basedescriptor expands to a descriptor for the base type
(i.e., all pointers are stripped).

A function returning void (more precisely, a function whose out typemap returns SCM_UNSPECIFIED) is treated as returning no values. In argout typemaps, one can use the macro
GUILE_APPEND_RESULT in order to append a value to the list of function return values.

Multiple values can be passed up to Scheme in one of three ways:

« Multiple values as lists. By default, if more than one value is to be returned, a list of the values is created and returned; to switch back to this behavior, use

$values_as_list;

« Multiple values as vectors. By issuing

$values_as_vector;

vectors instead of lists will be used.

« Multiple values for multiple-value continuations. This is the most elegant way. By issuing

smultiple_values;

multiple values are passed to the multiple-value continuation, as created by call-with-values or the convenience macroreceive. The latter is available if you issue (use-modules
(srfi srfi-8)). Assuming that yourdivide function wants to return two values, a quotient and a remainder, you can write:

(receive (quotient remainder)
(divide 35 17)
body...)

In body, the first result ofdivide will be bound to the variable quotient, and the second result to remainder.
See also the "multivalue” example.

Constants are exported as a function that returns the value. The %feature("constasvar") can be applied to any constant, immutable variable, or enum. Instead of exporting the constant as a
function that must be called, the constant will appear as a scheme variable. See Features and the %feature directive for info on how to apply the %feature.

26.7 Representation of pointers as smobs

For pointer types, SWIG uses Guile smobs. SWIG smobs print like this: #<swig struct xyzzy * 0x1234affe> Two of them areequal? if and only if they have the same type and
value.

To construct a Scheme object from a C pointer, the wrapper code calls the function SWIG_NewPointerObj (), passing a pointer to a struct representing the pointer type. The type index to
store in the upper half of the CAR is read from this struct. To get the pointer represented by a smob, the wrapper code calls the function SWIG_ConvertPtr (), passing a pointer to a struct
representing the expected pointer type. See also The run-time type checker. If the Scheme object passed was not a SWIG smob representing a compatible pointer, a wrong-type-arg
exception is raised.

26.7.1 Smobs

In earlier versions of SWIG, C pointers were represented as Scheme strings containing a hexadecimal rendering of the pointer value and a mangled type name. As Guile allows registering
user types, so-called "smobs" (small objects), a much cleaner representation has been implemented now. The details will be discussed in the following.

The whole type system, when it is first initialized, creates two smobs named "swig" and "collected_swig". The swig smob is used for non-garbage collected smobs, while the collected_swig
smob is used as described below. Each smob has the same format, which is a double cell created by SCM_NEWSMOB2() The first word of data is the pointer to the object and the second
word of data is the swig_type_info * structure describing this type. If a generated GOOPS module has been loaded, smobs will be wrapped by the corresponding GOOPS class.

26.7.2 Garbage Collection

Garbage collection is a feature of Guile since version 1.6. As SWIG now requires Guile > 1.8, it is automatically included. Garbage collection works like this. Every swig_type_info structure
stores in its clientdata field a pointer to the destructor for this type. The destructor is the generated wrapper around the delete function. So swig still exports a wrapper for the destructor, it just
does not call scm_c_define_gsubr() for the wrapped delete function. So the only way to delete an object is from the garbage collector, since the delete function is not available to scripts. How
swig determines if a type should be garbage collected is exactly like described in Object ownership and %newobject in the SWIG manual. All typemaps use an $owner var, and the guile
module replaces $owner with 0 or 1 depending on feature:new.

26.8 Native Guile pointers

In addition to SWIG smob pointers, Guile's native pointer type are accepted as arguments to wrapped SWIG functions. This can be useful for passing pointers to bytevector data to wrapped
functions.

26.9 Exception Handling

SWIG code calls scm_error on exception, using the following mapping:

MAP (SWIG_MemoryError, "swig-memory-error");
MAP(SWIG_IOError, "swig-io-error");

MAP (SWIG_RuntimeError, "swig-runtime-error");
MAP (SWIG_IndexError, "swig-index-error");

MAP (SWIG_TypeError, "swig-type-error");
MAP(SWIG_DivisionByZero, "swig-division-by-zero");
MAP(SWIG_OverflowError, "swig-overflow-error");
MAP (SWIG_SyntaxError, "swig-syntax-error");
MAP(SWIG_ValueError, "swig-value-error");

MAP (SWIG_SystemError, "swig-system-error");

26.6 Typemaps

237

https://www.gnu.org/software/guile/manual/html_node/Foreign-Pointers.html
https://www.gnu.org/software/guile/manual/html_node/Void-Pointers-and-Byte-Access.html#

SWIG-4.2 Documentation

The default when not specified here is to use "swig-error". See Lib/exception.i for details.

26.10 Procedure documentation
If invoked with the command-line option -procdoc file , SWIG creates documentation strings for the generated wrapper functions, describing the procedure signature and return value,
and writes them to file.
SWIG can generate documentation strings in three formats, which are selected via the command-line option -procdocformat format

e guile-1.4 (default): Generates a format suitable for Guile 1.4.
« plain: Generates a format suitable for Guile 1.4.1 and later.
« texinfo: Generates texinfo source, which must be run through texinfo in order to get a format suitable for Guile 1.4.1 and later.

You need to register the generated documentation file with Guile like this:

(use-modules (ice-9 documentation))
(set! documentation-files
(cons "file" documentation-files))

Documentation strings can be configured using the Guile-specific typemap argument doc. SeeLib/guile/typemaps. i for details.
26.11 Procedures with setters

For global variables, SWIG creates a single wrapper procedure (variable :optional value), which is used for both getting and setting the value. For struct members, SWIG creates
two wrapper procedures (struct-member-get pointer) and (struct-member-set pointer value).

If invoked with the command-line option -emit-setters (recommended), SWIG will additionally create procedures with setters. For global variables, the procedure-with-setter variable is
created, so you can use (variable) to getthe value and (set! (variable) value) to setit. For struct members, the procedure-with-setter st ruct-member is created, so you can
use (struct-member pointer) to getthe value and(set! (struct -member pointer) value) to setit.

If invoked with the command-line option -only-setters, SWIG will only create procedures with setters, i.e., for struct members, the procedures (struct-member -get pointer) and
(struct-member-set pointer value) are notgenerated.

26.12 GOOPS Proxy Classes

SWIG can also generate classes and generic functions for use with Guile's Object-Oriented Programming System (GOOPS). GOOPS is a sophisticated object system in the spirit of the
Common Lisp Object System (CLOS).

To enable GOOPS support, pass the -proxy argument to swig. This will export the GOOPS wrapper definitions into the module . scm file in the directory specified by -outdir or the current
directory. GOOPS support requires either passive or module linkage.

The generated file will contain definitions of GOOPS classes mimicking the C++ class hierarchy.
Enabling GOOPS support implies -emit-setters.

If —emit-slot-accessors is also passed as an argument, then the generated file will contain accessor methods for all the slots in the classes and for global variables. The input class

class Foo {
public:
Foo(int 1) : a(i) {}
int a;
int getMultBy(int i) { return a * i; }
Foo getFooMultBy(int i) { return Foo(a * i); }
}i
Foo getFooPlus(int i) { return Foo(a + i); }

will produce (if ~emit-slot-accessors is not passed as a parameter)

(define-class <Foo> (<swig>)
(a #:allocation #:swig-virtual
#:slot-ref primitive:Foo-a-get
#:slot-set! primitive:Foo-a-set)
#:metaclass <swig-metaclass>
#:new-function primitive:new-Foo
)
(define-method (getMultBy (swig_smob <Foo>) i)

(primitive:Foo-getMultBy (slot-ref swig_smob 'smob) i))
(define-method (getFooMultBy (swig_smob <Foo>) i)

(make <Foo> #:init-smob (primitive:Foo-getFooMultBy (slot-ref swig_smob 'smob) i)))

(define-method (getFooPlus i)
(make <Foo> #:init-smob (primitive:getFooPlus i)))

(export <Foo> getMultBy getFooMultBy getFooPlus)

and will produce (if ~emit-slot-accessors is passed as a parameter)

(define-class <Foo> (<swig>)
(a #:allocation #:swig-virtual
#:slot-ref primitive:Foo-a-get
#:slot-set! primitive:Foo-a-set
#:accessor a)
#:metaclass <swig-metaclass>
#:new-function primitive:new-Foo
)
(define-method (getMultBy (swig_smob <Foo>) i)

(primitive:Foo-getMultBy (slot-ref swig_smob 'smob) i))
(define-method (getFooMultBy (swig_smob <Foo>) i)

(make <Foo> #:init-smob (primitive:Foo-getFooMultBy (slot-ref swig smob 'smob) i)))

(define-method (getFooPlus i)

26.10 Procedure documentation

SWIG-4.2 Documentation

(make <Foo> #:init-smob (primitive:getFooPlus i)))

(export <Foo> a getMultBy getFooMultBy getFooPlus)

which can then be used by this code

;; not using getters and setters
(define foo (make <Foo> #:args '(45)))
(slot-ref foo 'a)

(slot-set! foo 'a 3)

(getMultBy foo 4)

(define foo2 (getFooMultBy foo 7))
(slot-ref foo 'a)

(slot-ref (getFooPlus foo 4) 'a)

;; using getters and setters

(define foo (make <Foo> #:args '(45)))
(a foo)

(set! (a foo) 5)

(getMultBy foo 4)

(a (getFooMultBy foo 7))

Notice that constructor arguments are passed as a list after the # : args keyword. Hopefully in the future the following will be valid (make <Foo> #:a 5 #:b 4)

Also note that the order the declarations occur in the .i file make a difference. For example,

gmodule test
%{ #include "foo.h" %}

%inline %{
int someFunc(Foo &a) {

}
%}

%include "foo.h"

This is a valid SWIG file it will work as you think it will for primitive support, but the generated GOOPS file will be broken. Since the someFunc definition is parsed by SWIG before all the
declarations in foo.h, the generated GOOPS file will contain the definition of someFunc () before the definition of <Foo>. The generated GOOPS file would look like

Tieee

(define-method (someFunc (swig_smob <Foo>))
(primitive:someFunc (slot-ref swig_ smob 'smob)))

PPoca
(define-class <Foo> (<swig>)

)

Notice that <Foo> is used before it is defined. The fix is to just put the $import "foo.h" before the $inline block.

26.12.1 Naming Issues

As you can see in the example above, there are potential naming conflicts. The default exported accessor for the Foo: : a variable is named a. The name of the wrapper global function is
getFooPlus. If the —-useclassprefix option is passed to swig, the name of all accessors and member functions will be prepended with the class name. So the accessor will be called Foo-
a and the member functions will be called Foo-getMultBy. Also, if the ~goopsprefix goops: argument is passed to swig, every identifier will be prefixed by goops :

Two guile-modules are created by SWIG. The first module contains the primitive definitions of all the wrapped functions and variables, and is located either in the _wrap.cxx file (with -
Linkage module) orin the scmstub file (if-Linkage passive -scmstub). The name of this guile-module is the swig-module name (given on the command line with the -module
argument or with the %module directive) concatenated with the string "-primitive". For example, if $module Test is set in the swig interface file, the name of the guile-module in the scmstub
or -Linkage module will be Test-primitive. Also, the scmstub file will be namedTest-primitive.scm. The string "primitive" can be changed by the-primsuf fix swig argument.
So the same interface, with the -primsuffix base will produce a module called Test-base . The second generated guile-module contains all the GOOPS class definitions and is located
in a file named module.scm in the directory specified with -outdir or the current directory. The name of this guile-module is the name of the swig-module (given on the command line or with the
smodule directive). In the previous example, the GOOPS definitions will be in a file named Test.scm.

Because of the naming conflicts, you can't in general use both the-primitive and the GOOPS guile-modules at the same time. To do this, you need to rename the exported symbols from
one or both guile-modules. For example,

(use-modules ((Test-primitive) #:renamer (symbol-prefix-proc 'primitive:)))
(use-modules ((Test) #:renamer (symbol-prefix-proc 'goops:)))

26.12.2 Linking

The guile-modules generated above all need to be linked together. GOOPS support requires either passive or module linkage. The exported GOOPS guile-module will be the name of the
swig-module and should be located in a file called Module.scm. This should be installed on the autoload path for guile, so that (use-modules (Package Module)) will load everything
needed. Thus, the top of the GOOPS guile-module will contain code to load everything needed by the interface (the shared library, the scmstub module, etc.). The $goops directive inserts
arbitrary code into the generated GOOPS guile-module, and should be used to load the dependent libraries.

This breaks up into three cases

« Passive Linkage without -scmstub: Note that this linkage style has the potential for naming conflicts, since the primitive exported function and variable names are not wrapped in a
guile-module and might conflict with names from the GOOPS guile-module (see above). Pass the -goopsprefix argument to solve this problem. If the —~exportprimitive option is
passed to SWIG the (export ...) code that would be exported into the scmstub file is exported at the bottom of the generated GOOPS guile-module. The $goops directive should
contain code to load the shared library.

%goops %{ (load-extension "./libfoo.so" "scm_init_my_modules_foo_module") %}

Produces the following code at the top of the generated GOOPS guile-module (with the -package my/modules -module foo command line arguments)

26.10 Procedure documentation 239

SWIG-4.2 Documentation

(define-module (my modules foo))

;7 %goops directive goes here
(load-extension "./libfoo.so" "scm_init my modules_foo_module")

(use-modules (oop goops) (Swig common))

« Passive Linkage with -scmstub: Here, the name of the scmstub file should be Module-primitive.scm (with primitive replaced with whatever is given with the -primsuffix
argument. The code to load the shared library should be located in the $scheme directive, which will then be added to the scmstub file. SWIG will automatically generate the line (use-
modules (Package Module-primitive)) into the GOOPS guile-module. So if Module-primitive.scmis on the autoload path for guile, the $goops directive can be empty.
Otherwise, the $goops directive should contain whatever code is needed to load the Module-primitive.scm file into guile.

%scheme %{ (load-extension "./libfoo.so" "scm_init my modules_foo_module") %}
// only include the following definition if (my modules foo) cannot
// be loaded automatically
%goops %{
(primitive-load "/path/to/foo-primitive.scm")
(primitive-load "/path/to/Swig/common.scm")
%}

Produces the following code at the top of the generated GOOPS guile-module

(define-module (my modules foo))

;i %goops directive goes here (if any)
(primitive-load "/path/to/foo-primitive.scm")
(primitive-load "/path/to/Swig/common.scm")

(use-modules (oop goops) (Swig common))
(use-modules ((my modules foo-primitive) :renamer (symbol-prefix-proc
'primitive:)))

« Module Linkage: This is very similar to passive linkage with a scmstub file. SWIG will also automatically generate the line (use-modules (Package Module-primitive)) into the
GOOPS guile-module. Again the $goops directive should contain whatever code is needed to get that module loaded into guile.

%goops %{ (load-extension "./libfoo.so" "scm_init_my modules_foo_module") %}

Produces the following code at the top of the generated GOOPS guile-module

(define-module (my modules foo))

;i1 %goops directive goes here (if any)
(load-extension "./libfoo.so" "scm_init my modules_foo_module")

(use-modules (oop goops) (Swig common))
(use-modules ((my modules foo-primitive) :renamer (symbol-prefix-proc
'primitive:)))

(Swig common): The generated GOOPS guile-module also imports definitions from the (Swig common) guile-module. This module is included with SWIG and should be installed by SWIG into
the autoload path for guile (based on the configure script and whatever arguments are passed). If it is not, then the $goops directive also needs to contain code to load the common . scm file
into guile. Also note that if you are trying to install the generated wrappers on a computer without SWIG installed, you will need to include the common.swg file along with the install.

Multiple Modules: Type dependencies between modules is supported. For example, if mod1 includes definitions of some classes, and mod2 includes some classes derived from classes in
mod1, the generated GOOPS file formod2 will declare the correct superclasses. The only problem is that since mod2 uses symbols from mod1, the mod2 GOOPS file must include a (use-
modules (mod2)). Currently, SWIG does not automatically export this line; it must be included in the $goops directive of mod2. Maybe in the future SWIG can detect dependencies and

export this line. (how do other language modules handle this problem?)

27 SWIG and Java

« Overview
« Preliminaries
Running SWIG
Additional Commandline Options
Getting the right header files
Compiling a dynamic module
Using your module
Dynamic linking problems
Compilation problems and compiling with C++
Building on Windows
= Running SWIG from Visual Studio
» Using NMAKE
« A tour of basic C/C++ wrapping
Modules, packages and generated Java classes
Eunctions
Global variables
Constants
Enumerations
= Anonymous enums
= Typesafe enums
= Proper Java enums
= Type unsafe enums
» Simple enums
Pointers
Structures
C++ classes
C++ inheritance

°

°

o

°

°

°

°

°

°

o

°

°

o

°

°

°

°

26.10 Procedure documentation

240

SWIG-4.2 Documentation

o Pointers, references. arrays and pass by value
= Null pointers
o C++ overloaded functions
o C++ default arguments
o C++ namespaces
o C++ templates
o C++ Smart Pointers
= The shared_ptr Smart Pointer
= Generic Smart Pointers
« Further details on the generated Java classes
o The intermediary JNI class
» The intermediary JNI class pragmas
o The Java module class
= The Java module class pragmas
o Java proxy classes
= Memory management
= Inheritance
= Proxy classes and garbage collection
= The premature garbage collection prevention parameter for proxy class marshalling
= Single threaded applications and thread safety.
o Type wrapper classes
o Enum classes
= Typesafe enum classes
= Proper Java enum classes
» Type unsafe enum classes
o Interfaces
« Cross language polymorphism using directors
Enabling directors
Director classes
Overhead and code bloat
Simple directors example
Director threading issues
Director performance tuning
Java exceptions from directors
=« Customizing director exceptions
» Accessing protected members
« Common customization features
o C/C++ helper functions
o Class extension with %extend
o Class extension with %proxycode
o Exception handling with %exception and %javaexception
o Method access with %javamethodmodifiers
o Java begin
« Tips and techniques
o Input and output parameters using primitive pointers and references
o Simple pointers
o Wrapping C arrays with Java arrays
o Unbounded C Arrays
o Binary data vs Strings
o Overriding new and delete to allocate from Java heap
« Java typemaps
Default primitive type mappings
Default typemaps for non-primitive types
Sixty four bit JVMs
What is a typemap?
Typemaps for mapping C/C++ types to Java types
Java typemap attributes
Java special variables
Typemaps for both C and C++ compilation
Java code typemaps
Director specific typemaps
« Typemap Examples
Simpler Java enums for enums without initializers
Handling C++ exception specifications as Java exceptions
NaN Exception - exception handling for a particular type
Converting Java String arrays to char **
Expanding a Java object to multiple arguments
Using typemaps to return arguments
Adding Java downcasts to polymorphic return types
Adding an equals method to the Java classes
Void pointers and a common Java base class
Struct pointer to pointer
Memory management when returning references to member variables
Memory management for objects passed to the C++ layer
Date marshalling using the javain typemap and associated attributes
« Living with Java Directors
« Odds and ends
o JavaDoc comments
o Functional interface without proxy classes
o Using your own JNI functions
o Performance concerns and hints
o Debugging
« Java Examples

o

°

°

°

°

°

°

°

°

o

°

°

o

°

°

o

°

°

°

°

°

o

°

°

o

°

°

o

°

°

This chapter describes SWIG's support of Java. It covers most SWIG features, but certain low-level details are covered in less depth than in earlier chapters.
27.1 Overview

The 100% Pure Java effort is a commendable concept, however in the real world programmers often either need to re-use their existing code or in some situations want to take advantage of
Java but are forced into using some native (C/C++) code. The Java extension to SWIG makes it very easy to plumb in existing C/C++ code for access from Java, as SWIG writes the Java
Native Interface (JNI) code for you. It is different to using the ‘javah’ tool as SWIG will wrap existing C/C++ code, whereas javah takes 'native’ Java function declarations and creates C/C++
function prototypes. SWIG wraps C/C++ code using Java proxy classes and is very useful if you want to have access to large amounts of C/C++ code from Java. If only one or two JNI
functions are needed then using SWIG may be overkill. SWIG enables a Java program to easily call into C/C++ code from Java. Historically, SWIG was not able to generate any code to call
into Java code from C++. However, SWIG now supports full cross language polymorphism and code is generated to call up from C++ to Java when wrapping C++ virtual methods via the
director feature.

Java is one of the few non-scripting language modules in SWIG. As SWIG utilizes the type safety that the Java language offers, it takes a somewhat different approach to that used for
scripting languages. In particular runtime type checking and the runtime library are not used by Java. This should be borne in mind when reading the rest of the SWIG documentation. This
chapter on Java is relatively self contained and will provide you with nearly everything you need for using SWIG and Java. However, the "SWIG Basics" chapter will be a useful read in
conjunction with this one.

27.1 Overview

241

SWIG-4.2 Documentation

This chapter starts with a few practicalities on running SWIG and compiling the generated code. If you are looking for the minimum amount to read, have a look at the sections up to and
including the tour of basic C/C++ wrapping section which explains how to call the various C/C++ code constructs from Java. Following this section are details of the C/C++ code and Java
classes that SWIG generates. Due to the complexities of C and C++ there are different ways in which C/C++ code could be wrapped and called from Java. SWIG is a powerful tool and the rest
of the chapter details how the default code wrapping can be tailored. Various customisation tips and techniques using SWIG directives are covered. The latter sections cover the advanced
techniques of using typemaps for complete control of the wrapping process.

27.2 Preliminaries

SWIG 1.1 works with JDKs from JDK 1.1 to JDK1.4 (Java 2 SDK1.4) and should also work with any later versions. Given the choice, you should probably use the latest version of Sun's JDK.
The SWIG Java module is known to work using Sun's JVM on Solaris, Linux and the various flavours of Microsoft Windows including Cygwin. The Kaffe JVM is known to give a few problems
and at the time of writing was not a fully fledged JVM with full JNI support. The generated code is also known to work on vxWorks using WindRiver's PJava 3.1. The best way to determine
whether your combination of operating system and JDK will work is to test the examples and test-suite that comes with SWIG. Run make -k check from the SWIG root directory after
installing SWIG on Unix systems.

The Java module requires your system to support shared libraries and dynamic loading. This is the commonly used method to load JNI code so your system will more than likely support this.
Android uses Java JNI and also works with SWIG. Please read the Android chapter in conjunction with this one if you are targeting Android.

27.2.1 Running SWIG

Suppose that you defined a SWIG module such as the following:

/* File: example.i */
gmodule test

3{

#include "stuff.h"

%}

int fact(int n);

To build a Java module, run SWIG using the -java option :

%swig -java example.i

If building C++, add the -c++ option:

$ swig -c++ -java example.i

This creates two different files; a C/C++ source file example_wrap.c orexample_wrap.cxx and numerous Java files. The generated C/C++ source file contains the JNI wrapper code that
needs to be compiled and linked with the rest of your C/C++ application.

The name of the wrapper file is derived from the name of the input file. For example, if the input file is example. i, the name of the wrapper file is example_wrap.c. To change this, you can
use the -o option. It is also possible to change theoutput directory that the Java files are generated into using-outdir.

The module name, specified with $module, determines the name of various generated classes as discussed later. Note that the module name does not define a Java package and by default,
the generated Java classes do not have a Java package. The -package option described below can specify a Java package name to use.

The following sections have further practical examples and details on how you might go about compiling and using the generated files.
27.2.2 Additional Commandline Options

The following table lists the additional commandline options available for the Java module. They can also be seen by using:

swig -java -help

Java specific options

-nopgcpp suppress the premature garbage collection prevention parameter
enerate the low-level functional interface instead of prox
“noproxy glasses Py

-package <name> set name of the Java package to <name>
Their use will become clearer by the time you have finished reading this section on SWIG and Java.

27.2.3 Getting the right header files

In order to compile the C/C++ wrappers, the compiler needs the jni.h and jni_md.h header files which are part of the JDK. They are usually in directories like this:

/usr/java/include
/usr/java/include/<operating_system>

The exact location may vary on your machine, but the above locations are typical.
27.2.4 Compiling a dynamic module

The JNI code exists in a dynamic module or shared library (DLL on Windows) and gets loaded by the JVM. Assuming you have code you need to link to in a file called example.c, in order to
build a shared library file, you need to compile your module in a manner similar to the following (shown for Solaris):

swig -java example.i

gcc -fPIC -c example wrap.c -I/usr/java/include -I/usr/java/include/solaris
gcc -fPIC -c example.c

1d -G example_wrap.o example.o -o libexample.so

w» n N n

The exact commands for doing this vary from platform to platform. However, SWIG tries to guess the right options when it is installed. Therefore, you may want to start with one of the
examples in the Examples/java directory. If that doesn't work, you will need to read the man-pages for your compiler and linker to get the right set of options. You might also check the
SWIG Wiki for additional information.

Important
If you are going to use optimisations turned on with gcc (for example -O2), ensure you also compile with -fno-strict-aliasing. The GCC optimisations have become more aggressive from gcc-
4.0 onwards and will result in code that fails with strict aliasing optimisations turned on. See the C/C++ to Java typemaps section for more details.

The name of the shared library output file is important. If the name of your SWIG module is "example", the name of the corresponding shared library file should be "1ibexample.so" (or
equivalent depending on your machine, see Dynamic linking problems for more information). The name of the module is specified using the $module directive or -module command line

27.2 Preliminaries

https://github.com/swig/swig/wiki

SWIG-4.2 Documentation

option.
27.2.5 Using your module

To load your shared native library module in Java, simply use Java's System. loadLibrary method in a Java class:

// runme.java

public class runme {
static {
System.loadLibrary("example");

i

public static void main(String argv[]) {
System.out.println(example.fact(4));
}

Compile all the Java files and run:

$ javac *.java
$ java runme
24

$

If it doesn't work have a look at the following section which discusses problems loading the shared library.
27.2.6 Dynamic linking problems

As shown in the previous section the code to load a native library (shared library) is System. loadLibrary ("name"). This can fail with an UnsatisfiedLinkError exception and can be due to
a number of reasons.

You may get an exception similar to this:

$ java runme
Exception in thread "main" java.lang.UnsatisfiedLinkError: no example in java.library.path
at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1312)
at java.lang.Runtime.loadLibraryO(Runtime.java:749)
at java.lang.System.loadLibrary(System.java:820)
at runme.<clinit>(runme.java:5)

The most common cause for this is an incorrect naming of the native library for the name passed to the loadLibrary function. The string passed to the loadLibrary function must not
include the file extension name in the string, that is .dll or .so. The string must be name and not libname for all platforms. On Windows the native library must then be called name.dl/ and on
most Unix systems it must be called /ibname.so .

Another common reason for the native library not loading is because it is not in your path. On Windows make sure the path environment variable contains the path to the native library. On Unix
make sure that your LD _LIBRARY_PATH contains the path to the native library. Adding paths to LD_LIBRARY _PATH can slow down other programs on your system so you may want to
consider alternative approaches. For example you could recompile your native library with extra path information using -rpath if you're using GNU, see the GNU linker documentation (1d
man page). You could use a command such as 1dconfig (Linux) or crle (Solaris) to add additional search paths to the default system configuration (this requires root access and you will
need to read the man pages).

The native library will also not load if there are any unresolved symbols in the compiled C/C++ code. The following exception is indicative of this:

$ java runme
Exception in thread "main" java.lang.UnsatisfiedLinkError: libexample.so: undefined
symbol: fact

at java.lang.ClassLoader$NativeLibrary.load(Native Method)

at java.lang.ClassLoader.loadLibrary0(ClassLoader.java, Compiled Code)

at java.lang.ClassLoader.loadLibrary(ClassLoader.java, Compiled Code)

at java.lang.Runtime.loadLibrary0(Runtime.java, Compiled Code)

at java.lang.System.loadLibrary(System.java, Compiled Code)

at runme.<clinit>(runme.java:5)

This error usually indicates that you forgot to include some object files or libraries in the linking of the native library file. Make sure you compile both the SWIG wrapper file and the code you
are wrapping into the native library file. If you forget to compile and link in the SWIG wrapper file into your native library file, you will get a message similar to the following:

$ java runme

Exception in thread "main" java.lang.UnsatisfiedLinkError: exampleJNI.gcd(II)I
at exampleJNI.gcd(Native Method)
at example.gcd(example.java:12)
at runme.main(runme.java:18)

where ged is the missing JNI function that SWIG generated into the wrapper file. Also make sure you pass all of the required libraries to the linker. The java -verbose:jni commandline
option is also a great way to get more information on unresolved symbols. One last piece of advice is to beware of the common faux pas of having more than one native library version in your
path.

In summary, ensure that you are using the correct C/C++ compiler and linker combination and options for successful native library loading. If you are using the examples that ship with SWIG,
then the Examples/Makefile must have these set up correctly for your system. The SWIG installation package makes a best attempt at getting these correct but does not get it right 100% of

the time. The SWIG Wiki also has some settings for commonly used compiler and operating system combinations. The following section also contains some C++ specific linking problems and
solutions.

27.2.7 Compilation problems and compiling with C++

On most machines, shared library files should be linked using the C++ compiler. For example:

swig -c++ -java example.i

g++ -c -fpic example.cxx

g++ -c -fpic example_wrap.cxx -I/usr/java/j2sdkl.4.1l/include -I/usr/java/j2sdkl.4.1/include/linux
g++ -shared example.o example wrap.o -o libexample.so

00 00 00 o

27.2 Preliminaries

https://github.com/swig/swig/wiki

SWIG-4.2 Documentation

In addition to this, you may need to include additional library files to make it work. For example, if you are using the Sun C++ compiler on Solaris, you often need to add an extra library -1Crun

like this:
% swig -c++ -java example.i
% CC -c example.cxx
% CC -c example wrap.cxx -I/usr/java/include -I/usr/java/include/solaris
% CC -G example.o example_wrap.o -L/opt/SUNWspro/lib -o libexample.so -1Crun

If you aren't entirely sure about the linking for C++, you might look at an existing C++ program. On many Unix machines, the 1dd command will list library dependencies. This should give you
some clues about what you might have to include when you link your shared library. For example:

$ 1dd swig
libstdc++-1libc6.1-1.s0.2 => /usr/lib/libstdc++-1libc6.1-1.s0.2 (0x40019000)
libm.so.6 => /lib/libm.so.6 (0x4005b000)
libc.so.6 => /lib/libc.so.6 (0x40077000)
/1ib/1ld-linux.so0.2 => /lib/ld-linux.so.2 (0x40000000)

Finally make sure the version of JDK header files matches the version of Java that you are running as incompatibilities could lead to compilation problems or unpredictable behaviour.

27.2.8 Building on Windows
Building on Windows is roughly similar to the process used with Unix. You will want to produce a DLL that can be loaded by the Java Virtual Machine. This section covers the process of using
SWIG with Microsoft Visual C++ 6 although the procedure may be similar with other compilers. In order for everything to work, you will need to have a JDK installed on your machine in order
to read the JNI header files.

27.2.8.1 Running SWIG from Visual Studio

If you are developing your application within Microsoft Visual studio, SWIG can be invoked as a custom build option. The Examples\java directory has a few Windows Examples containing
Visual Studio project (.dsp) files. The process to re-create the project files for a C project are roughly:

Open up a new workspace and use the AppWizard to select a DLL project.

Add both the SWIG interface file (the .i file), any supporting C files, and the name of the wrapper file that will be created by SWIG (ie. example_wrap.c). Don't worry if the wrapper file
doesn't exist yet--Visual Studio will keep a reference to it.

Select the SWIG interface file and go to the settings menu. Under settings, select the "Custom Build" option.

Enter "SWIG" in the description field.

Enter "swig -java -o $(ProjDir)\$(InputName) wrap.c $(InputPath) "inthe "Build command(s) field"

Enter "$ (ProjDir)\$ (InputName)_wrap.c" in the "Output files(s) field".

Next, select the settings for the entire project and go to C/C++ tab and select the Preprocessor category. Add the include directories to the JNI header files under "Additional include
directories", eg "C:\jdk1.3\include, C:\jdk1.3\include\win32".

Next, select the settings for the entire project and go to Link tab and select the General category. Set the name of the output file to match the name of your Java module (ie. example.dll).
Next, select the example.c and example_wrap.c files and go to the C/C++ tab and select the Precompiled Headers tab in the project settings. Disabling precompiled headers for these
files will overcome any precompiled header errors while building.

Finally, add the java compilation as a post build rule in the Post-build step tab in project settings, eg, "c:\jdk1.3\bin\javac *.java"

Build your project.

Note: If using C++, choose a C++ suffix for the wrapper file, for example example_wrap.cxx. Use_wrap.cxx instead of _wrap. c in the instructions above and add -c++ when invoking
swig.

Now, assuming all went well, SWIG will be automatically invoked when you build your project. When doing a build, any changes made to the interface file will result in SWIG being
automatically invoked to produce a new version of the wrapper file.

The Java classes that SWIG output should also be compiled into .class files. To run the native code in the DLL (example.dll), make sure that it is in your path then run your Java program
which uses it, as described in the previous section. If the library fails to load have a look at Dynamic linking problems.

27.2.8.2 Using NMAKE

Alternatively, a Makefile for use by NMAKE can be written. Make sure the environment variables for MSVC++ are available and the MSVC++ tools are in your path. Now, just write a short
Makefile like this :

Makefile for using SWIG and Java for C code

SRCS = example.c

IFILE = example
INTERFACE = $(IFILE).i
WRAPFILE =] $(IFILE)_wrap.c

Location of the Visual C++ tools (32 bit assumed)

TOOLS = c:\msdev

TARGET = example.dll

cc = $(TOOLS)\bin\cl.exe
LINK = $(TOOLS)\bin\link.exe
INCLUDE32 = -I$(TOOLS)\include
MACHINE = IX86

C Library needed to build a DLL
DLLIBC = msvcrt.lib oldnames.lib

Windows libraries that are apparently needed
WINLIB = kernel32.lib advapi32.lib user32.lib gdi32.lib comdlg32.lib winspool.lib

Libraries common to all DLLs
LIBS = $(DLLIBC) $(WINLIB)

Linker options
LOPT = -debug:full -debugtype:cv /NODEFAULTLIB /RELEASE /NOLOGO \
/MACHINE: $ (MACHINE) -entry: DllMainCRTStartup@l2 -dll

C compiler flags

CFLAGS = /27 /0d /c /nologo
JAVA_ INCLUDE = -ID:\jdkl.3\include -ID:\jdkl.3\include\win32
java::

swig -java -o $(WRAPFILE) $(INTERFACE)

27.2 Preliminaries

SWIG-4.2 Documentation

$(CC) $(CFLAGS) $(JAVA INCLUDE) $(SRCS) $(WRAPFILE)

set LIB=$(TOOLS)\lib

$(LINK) $(LOPT) -out:example.dll $(LIBS) example.obj example wrap.obj
javac *.java

To build the DLL and compile the java code, run NMAKE (you may need to run vevars32 first). This is a pretty simplistic Makefile, but hopefully it's enough to get you started. Of course you
may want to make changes for it to work for C++ by adding in the -c++ command line option for swig and replacing .c with .cxx.

27.3 A tour of basic C/C++ wrapping

By default, SWIG attempts to build a natural Java interface to your C/C++ code. Functions are wrapped as functions, classes are wrapped as classes, variables are wrapped with JavaBean
type getters and setters and so forth. This section briefly covers the essential aspects of this wrapping.

27.3.1 Modules, packages and generated Java classes

The SWIG $module directive specifies the name of the Java module. When you specify “$module example', the module namedetermines the name of some of the generated files in the
module. The generated code consists of a module classfile example. java , an intermediary JNI classfile, exampleJNI. java as well as numerous other Java proxy classfiles. Each proxy
class is named after the structs, unions and classes you are wrapping. You may also get a constants interfacefile if you are wrapping any unnamed enumerations or constants, for example
exampleConstants. java. When choosing a module name, make sure you don't use the same name as one of the generated proxy class files nor a Java keyword. Sometimes a C/C++ type
cannot be wrapped by a proxy class, for example a pointer to a primitive type. In these situations a type wrapper class is generated. Wrapping an enum generates anenum class, either a
proper Java enum or a Java class that simulates the enums pattern. Details of all these generated classes will unfold as you read this section.

The JNI (C/C++) code is generated into a file which also contains the module name, for example example_wrap.cxx or example_wrap.c. These C or C++ files complete the contents of
the module.

The generated Java classes can be placed into a Java package by using the -package commandline option. This is often combined with the —outdir to specify a package directory for
generating the Java files.

swig -java -package com.bloggs.swig -outdir com/bloggs/swig example.i

SWIG won't create the directory, so make sure it exists beforehand.
27.3.2 Functions

There is no such thing as a global Java function so global C functions are wrapped as static methods in the module class. For example,

gmodule example
int fact(int n);

creates a static function that works exactly like you think it might:

public class example {
public static int fact(int n) {
// makes call using JNI to the C function
}
}

The Java class example is the module class. The function can be used as follows from Java:

System.out.println(example.fact(4));

27.3.3 Global variables

C/C++ global variables are fully supported by SWIG. Java does not allow the overriding of the dot operator so all variables are accessed through getters and setters. Again because there is no
such thing as a Java global variable, access to C/C++ global variables is done through static getter and setter functions in the module class.

// SWIG interface file with global variables
%module example

%inline %{

extern int My variable;
extern double density;
%)

Now in Java :

// Print out value of a C global variable
System.out.println("My_variable = " + example.getMy variable());
// Set the value of a C global variable
example.setDensity(0.8442);

The value returned by the getter will always be up to date even if the value is changed in C. Note that the getters and setters produced follow the JavaBean property design pattern. That is the
first letter of the variable name is capitalized and preceded with set or get. If you have the misfortune of wrapping two variables that differ only in the capitalization of their first letters, use
%rename to change one of the variable names. For example:

%rename Clash RenamedClash;
float Clash;
int clash;

If a variable is declared as const, it is wrapped as a read-only variable. That is only a getter is produced.

To make ordinary variables read-only, you can use the $immutable directive. For example:

%4

27.3 A tour of basic C/C++ wrapping

SWIG-4.2 Documentation

extern char *path;
%)

%immutable;

extern char *path;
gmutable;

The simmutable directive stays in effect until it is explicitly disabled or cleared using $mutable. See the Creating read-only variables section for further details.

If you just want to make a specific variable immutable, supply a declaration name. For example:

3{

extern char *path;
%}

%immutable path;

extern char *path; // Read-only (due to %immutable)

27.3.4 Constants

C/C++ constants are wrapped as Java static final variables. To create a constant, use #define or the $constant directive. For example:

#define PI 3.14159

#define VERSION "1.0"

%constant int FOO = 42;

%constant const char *path = "/usr/local";

By default the generated static final variables are initialized by making a JNI call to get their value. The constants are generated into the constants interface and look like this:

public interface exampleConstants {
public final static double PI = exampleJNI.PI get();
public final static String VERSION = exampleJNI.VERSION get();
public final static int FOO = exampleJNI.FOO_get();
public final static String path = exampleJNI.path get();

Note that SWIG has inferred the C type and used an appropriate Java type that will fit the range of all possible values for the C type. By default SWIG generates runtime constants. They are
not compiler constants that can, for example, be used in a switch statement. This can be changed by using the % javaconst (flag) directive. It works like all the other %feature directives.
The default is $javaconst (0). It is possible to initialize all wrapped constants from pure Java code by placing a $ javaconst (1) before SWIG parses the constants. Putting it at the top of
your interface file would ensure this. Here is an example:

%javaconst(1l);
%javaconst(0) BIG;
%javaconst(0) LARGE;

#define EXPRESSION (0x100+5)
#define BIG 1000LL
#define LARGE 2000ULL

generates:

public interface exampleConstants {

public final static int EXPRESSION = (0x100+5);

public final static long BIG = exampleJNI.BIG get();

public final static java.math.BigInteger LARGE = exampleJNI.LARGE_get();
}

Note that SWIG has inferred the C 1long long type from BIG and used an appropriate Java type (Long) as a Java long is the smallest sized Java type that will take all possible values for a
C long long. Similarly for LARGE.

Be careful using the $javaconst (1) directive as not all C code will compile as Java code. For example neither the 1000LL value for BIG nor 2000ULL for LARGE above would generate valid
Java code. The example demonstrates how you can target particular constants (BIG and LARGE) with $javaconst. SWIG doesn't use $javaconst (1) as the default as it tries to generate
code that will always compile. However, using a $javaconst (1) at the top of your interface file is strongly recommended as the preferred compile time constants will be generated and most
C constants will compile as Java code and in any case the odd constant that doesn't can be fixed using $javaconst (0).

There is an alternative directive which can be used for these rare constant values that won't compile as Java code. This is the $javaconstvalue(value) directive, where value is a Java
code replacement for the C constant and can be either a string or a number. This is useful if you do not want to use either the parsed C value nor a JNI call, such as when the C parsed value
will not compile as Java code and a compile time constant is required. The same example demonstrates this:

%javaconst(1);
%$javaconstvalue("new java.math.BigInteger(\"2000\")") LARGE;
%javaconstvalue(1000) BIG;

#define EXPRESSION (0x100+5)
#define BIG 1000LL
#define LARGE 2000ULL

Note the string quotes for "2000" are escaped. The following is then generated:

public interface exampleConstants {

public final static int EXPRESSION = (0x100+5);

public final static long BIG = 1000;

public final static java.math.BigInteger LARGE = new java.math.BigInteger("2000");
}

Note: declarations declared as const are wrapped as read-only variables and will be accessed using a getter as described in the previous section. They are not wrapped as constants. The
exception to this rule are static const integral values defined within a class/struct, where they are wrapped as constants, eg:.

struct Maths {

27.3 A tour of basic C/C++ wrapping

246

SWIG-4.2 Documentation

static const int FIVE = 5;
Yi

Compatibility Note: In SWIG-1.3.19 and earlier releases, the constants were generated into the module class and the constants interface didn't exist. Backwards compatibility is maintained as

the module class implements the constants interface (even though some consider this type of interface implementation to be bad practice):

public class example implements exampleConstants {

}

You thus have the choice of accessing these constants from either the module class or the constants interface, for example, example . EXPRESSION or exampleConstants . EXPRESSION.

Or if you decide this practice isn't so bad and your own class implements exampleConstants, you can of course just use EXPRESSION.

27.3.5 Enumerations

SWIG handles both named and unnamed (anonymous) enumerations. There is a choice of approaches to wrapping named C/C++ enums. This is due to historical reasons as SWIG's initial

support for enums was limited and Java did not originally have support for enums. Each approach has advantages and disadvantages and it is important for the user to decide which is the

most appropriate solution. There are four approaches of which the first is the default approach based on the so called Java typesafe enum pattern. The second generates proper Java enums.

The final two approaches use simple integers for each enum item. Before looking at the various approaches for wrapping named C/C++ enums, anonymous enums are considered.

27.3.5.1 Anonymous enums

There is no name for anonymous enums and so they are handled like constants. For example:

enum { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

is wrapped into the constants interface, in a similar manner as constants (see previous section):

public interface exampleConstants {
public final static int ALE = exampleJNI.ALE get();
public final static int LAGER = exampleJNI.LAGER get();
public final static int STOUT = exampleJNI.STOUT get();
public final static int PILSNER = exampleJNI.PILSNER get();
public final static int PILZ = exampleJNI.PILZ_get();

The $javaconst (flag) and $javaconstvalue (value) directive introduced in the previous section on constants can also be used with enums. As is the case for constants, the default is
%javaconst (0) as not all C values will compile as Java code. However, it is strongly recommended to add in a $ javaconst (1) directive at the top of your interface file as it is only on very
rare occasions that this will produce code that won't compile under Java. Using $javaconst (1) will ensure compile time constants are generated, thereby allowing the enum values to be

used in Java switch statements. Example usage:

%javaconst(1);
%javaconst(0) PILSNER;
enum { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

generates:

public interface exampleConstants {
public final static int ALE = 0;
public final static int LAGER = 10;
public final static int STOUT = LAGER + 1;
public final static int PILSNER = exampleJNI.PILSNER get();
public final static int PILZ = PILSNER;

As in the case of constants, you can access them through either the module class or the constants interface, for example, example .ALE or exampleConstants.ALE.

27.3.5.2 Typesafe enums

This is the default approach to wrapping named enums. The typesafe enum pattern is a relatively well known construct to work around the lack of enums in versions of Java prior to JDK 1.5. It

basically defines a class for the enumeration and permits a limited number of final static instances of the class. Each instance equates to an enum item within the enumeration. The

implementation is in the "enumtypesafe.swg" file. Let's look at an example:

%include "enumtypesafe.swg" // optional as typesafe enums are the default
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

will generate:

public final class Beverage {
public final static Beverage ALE = new Beverage("ALE");
public final static Beverage LAGER = new Beverage("LAGER", exampleJNI.LAGER get());
public final static Beverage STOUT = new Beverage("STOUT");
public final static Beverage PILSNER = new Beverage("PILSNER");
public final static Beverage PILZ = new Beverage("PILZ", exampleJNI.PILZ get());
[... additional support methods omitted for brevity ...]

See Typesafe enum classes to see the omitted support methods. Note that the enum item with an initializer (LAGER) is initialized with the enum value obtained via a JNI call. However, as

anonymous enums and constants, use of the ¢ javaconst directive is strongly recommended to change this behaviour:

with

%include "enumtypesafe.swg" // optional as typesafe enums are the default
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

will generate:

public final class Beverage {

27.3 A tour of basic C/C++ wrapping

247

public
public
public
public
public

final
final
final
final
final

static
static
static
static
static

Beverage
Beverage
Beverage
Beverage
Beverage

SWIG-4.2 Documentation

ALE = new Beverage("ALE");
LAGER = new Beverage("LAGER",
STOUT = new Beverage("STOUT");
PILSNER = new Beverage("PILSNER");
PILZ = new Beverage("PILZ", PILSNER);

10);

[... additional support methods omitted for brevity ...]

The generated code is easier to read and more efficient as a true constant is used instead of a JNI call. As is the case for constants, the default is $javaconst (0) as not all C values will
compile as Java code. However, it is recommended to add in a $ javaconst (1) directive at the top of your interface file as it is only on very rare occasions that this will produce code that
won't compile under Java. The $javaconstvalue(value) directive can also be used for typesafe enums. Note that global enums are generated into a Java class within whatever package
you are using. C++ enums defined within a C++ class are generated into a static final inner Java class within the Java proxy class.

Typesafe enums have their advantages over using plain integers in that they can be used in a typesafe manner. However, there are limitations. For example, they cannot be used in switch
statements and serialization is an issue. Please look at the following references for further information: Replace Enums with Classes in Effective Java Programming on the Sun website, Create
enumerated constants in Java JavaWorld article, Java Tip 133: More on typesafe enums and Java Tip 122: Beware of Java typesafe enumerations JavaWorld tips.

Note that the syntax required for using typesafe enums is the same as that for proper Java enums. This is useful during the period that a project has to support legacy versions of Java. When
upgrading to JDK 1.5 or later, proper Java enums could be used instead, without users having to change their code. The following section details proper Java enum generation.

27.3.5.3 Proper Java enums

Proper Java enums were only introduced in JDK 1.5 so this approach is only compatible with more recent versions of Java. Java enums have been designed to overcome all the limitations of
both typesafe and type unsafe enums and should be the choice solution, provided older versions of Java do not have to be supported. In this approach, each named C/C++ enum is wrapped
by a Java enum. Java enums, by default, do not support enums with initializers. Java enums are in many respects similar to Java classes in that they can be customised with additional
methods. SWIG takes advantage of this feature to facilitate wrapping C/C++ enums that have initializers. In order to wrap all possible C/C++ enums using proper Java enums, the "enums.swg"
file must be used. Let's take a look at an example.

%include "enums.swg"
%javaconst(1l);
enum Beverage { ALE, LAGER=10,

STOUT, PILSNER, PILZ=PILSNER };

will generate:

public enum Beverage {
ALE,
LAGER(10),
STOUT,
PILSNER,
PILZ (PILSNER);
[... additional support methods omitted for brevity ...]

See Proper Java enum classes to see the omitted support methods. The generated Java enum has numerous additional methods to support enums with initializers, such as LAGER above. Note
that as with the typesafe enum pattern, enum items with initializers are by default initialized with the enum value obtained via a JNI call. However, this is not the case above as we have used
the recommended % javaconst (1) to avoid the JNI call. Theg javaconstvalue (value) directive covered in the Constants section can also be used for proper Java enums.

The additional support methods need not be generated if none of the enum items have initializers and this is covered later in the Simpler Java enums for enums without initializers section.
27.3.5.4 Type unsafe enums
In this approach each enum item in a named enumeration is wrapped as a static final integer in a class named after the C/C++ enum name. This is a commonly used pattern in Java to simulate

C/C++ enums, but it is not typesafe. However, the main advantage over the typesafe enum pattern is enum items can be used in switch statements. In order to use this approach, the
"enumtypeunsafe.swg" file must be used. Let's take a look at an example.

%include "enumtypeunsafe.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10,

STOUT, PILSNER, PILZ=PILSNER };

will generate:

public final class Beverage {
public final static int ALE =
public final static int
public final static int
public final static int
public final static int

LAGER + 1;
PILSNER = STOUT + 1;
PILZ = PILSNER;

As is the case previously, the default is $ javaconst (0) as not all C/C++ values will compile as Java code. However, again it is recommended to add in a $javaconst (1) directive. and the
$javaconstvalue(value) directive covered in the Constants section can also be used for type unsafe enums. Note that global enums are generated into a Java class within whatever
package you are using. C++ enums defined within a C++ class are generated into a static final inner Java class within the Java proxy class.

Note that unlike typesafe enums, this approach requires users to mostly use different syntax compared with proper Java enums. Thus the upgrade path to proper enums provided in JDK 1.5 is
more painful.

27.3.5.5 Simple enums

This approach is similar to the type unsafe approach. Each enum item is also wrapped as a static final integer. However, these integers are not generated into a class named after the C/C++
enum. Instead, global enums are generated into the constants interface. Also, enums defined in a C++ class have their enum items generated directly into the Java proxy class rather than an
inner class within the Java proxy class. In fact, this approach is effectively wrapping the enums as if they were anonymous enums and the resulting code is as per anonymous enums. The
implementation is in the "enumsimple.swg" file.

Compatibility Note: SWIG-1.3.21 and earlier versions wrapped all enums using this approach. The type unsafe approach is preferable to this one and this simple approach is only included for
backwards compatibility with these earlier versions of SWIG.

27.3.6 Pointers

C/C++ pointers are fully supported by SWIG. Furthermore, SWIG has no problem working with incomplete type information. Here is a rather simple interface:

gmodule example

FILE *fopen(const char *filename, const char *mode);

27.3 A tour of basic C/C++ wrapping 248

http://java.sun.com/developer/Books/shiftintojava/page1.html#replaceenums
https://www.javaworld.com/article/2076970/create-enumerated-constants-in-java.html
https://www.javaworld.com/article/2077499/java-tip-133--more-on-typesafe-enums.html
https://www.javaworld.com/article/2077487/java-tip-122--beware-of-java-typesafe-enumerations.html

SWIG-4.2 Documentation

int fputs(const char *, FILE *);
int fclose(FILE *);

When wrapped, you will be able to use the functions in a natural way from Java. For example:

SWIGTYPE p_FILE f = example.fopen("junk", "w");
example. fputs("Hello World\n", £f);
example.fclose(f);

C pointers in the Java module are stored in a Java 1long and cross the JNI boundary held within this 64 bit number. Many other SWIG language modules use an encoding of the pointer in a
string. These scripting languages use the SWIG runtime type checker for dynamic type checking as they do not support static type checking by a compiler. In order to implement static type
checking of pointers within Java, they are wrapped by a simple Java class. In the example above the FILE * pointer is wrapped with a type wrapper classcalled SWIGTYPE p_FILE.

Once obtained, a type wrapper object can be freely passed around to different C functions that expect to receive an object of that type. The only thing you can't do is dereference the pointer
from Java. Of course, that isn't much of a concern in this example.

As much as you might be inclined to modify a pointer value directly from Java, don't. The value is not necessarily the same as the logical memory address of the underlying object. The value
will vary depending on the native byte-ordering of the platform (i.e., big-endian vs. little-endian). Most JVMs are 32 bit applications so any JNI code must also be compiled as 32 bit. The net
result is pointers in JNI code are also 32 bits and are stored in the high order 4 bytes on big-endian machines and in the low order 4 bytes on little-endian machines. By design it is also not
possible to manually cast a pointer to a new type by using Java casts as it is particularly dangerous especially when casting C++ objects. If you need to cast a pointer or change its value,
consider writing some helper functions instead. For example:

%inline %{

/* C-style cast */

Bar *FooToBar(Foo *f) {
return (Bar *) f;

}

/* C++-style cast */
Foo *BarToFoo(Bar *b) {
return dynamic_cast<Foo*>(b);

}

Foo *IncrFoo(Foo *f, int i) {
return f+i;

}

%}

Also, if working with C++, you should always try to use the new C++ style casts. For example, in the above code, the C-style cast may return a bogus result whereas as the C++-style cast will
return a NULL pointer if the conversion can't be performed.

27.3.7 Structures

If you wrap a C structure, it is wrapped by a Java class with getters and setters for access to the member variables. For example,

struct Vector {
double x, y, z;
b

is used as follows:

Vector v = new Vector();
v.setX(3.5);
v.set¥(7.2);

double x = v.getX();
double y = v.getY();

The variable setters and getters are also based on the JavaBean design pattern already covered under the Global variables section. Similar access is provided for unions and the public data
members of C++ classes.

This object is actually an instance of a Java class that has been wrapped around a pointer to the C structure. This instance doesn't actually do anything--it just serves as a proxy. The pointer to
the C object is held in the Java proxy class in much the same way as pointers are held by type wrapper classes. Further details about Java proxy classes are covered a little later.

const members of a structure are read-only. Data members can also be forced to be read-only using the ¢ immutable directive. For example:

struct Foo {

%immutable;

int x; /* Read-only members */
char *name;

fmutable;

}i

When char * members of a structure are wrapped, the contents are assumed to be dynamically allocated using malloc or new (depending on whether or not SWIG is run with the -c++
option). When the structure member is set, the old contents will be released and a new value created. If this is not the behavior you want, you will have to use a typemap (described later).

If a structure contains arrays, access to those arrays is managed through pointers. For example, consider this:

struct Bar {
int x[16];
}i

If accessed in Java, you will see behavior like this:

Bar b = new Bar();
SWIGTYPE_p_int x = b.getX();

27.3 A tour of basic C/C++ wrapping

249

SWIG-4.2 Documentation

This pointer can be passed around to functions that expect to receive an int * (just like C). You can also set the value of an array member using another pointer. For example:

Bar b = new Bar();

SWIGTYPE p_int x = b.getX();

Bar ¢ = new Bar();

c.setX(x); // Copy contents of b.x to c.x

For array assignment (setters not getters), SWIG copies the entire contents of the array starting with the data pointed to by b. x . In this example, 16 integers would be copied. Like C, SWIG
makes no assumptions about bounds checking---if you pass a bad pointer, you may get a segmentation fault or access violation. The default wrapping makes it hard to set or get just one
element of the array and so array access from Java is somewhat limited. This can be changed easily though by using the approach outlined later in the Wrapping C arrays with Java arrays and
Unbounded C Arrays sections.

When a member of a structure is itself a structure, it is handled as a pointer. For example, suppose you have two structures like this:

struct Foo {
int aj;

}i

struct Bar {
Foo f;
b

Now, suppose that you access the £ member of Bar like this:

Bar b = new Bar();
Foo X = b.getF();

In this case, x is a pointer that points to the Foo that is inside b. This is the same value as generated by this C code:

Bar b;
Foo *x = &b->f; /* Points inside b */

Because the pointer points inside the structure, you can modify the contents and everything works just like you would expect. For example:

Bar b = new Bar();

b.getF().setA(3); // Modify b.f.a

Foo X = b.getF();

x.setA(3); // Modify x.a - this is the same as b.f.a

27.3.8 C++ classes

C++ classes are wrapped by Java classes as well. For example, if you have this class,

class List {

public:
List();
~List();
int search(char *item);
void insert(char *item);
void remove(char *item);
char *get(int n);
int 1length;

you can use it in Java like this:

List 1 = new List();
l.insert("Ale");
l.insert("Stout");
l.insert("Lager");

String item = l.get(2);

int length = l.getLength();

Class data members are accessed in the same manner as C structures.

Static class members are unsurprisingly wrapped as static members of the Java class:

class Spam {

public:
static void foo();
static int bar;

}i

The static members work like any other Java static member:

Spam.foo();
int bar = Spam.getBar();

27.3.9 C++ inheritance

SWIG is fully aware of issues related to C++ inheritance. Therefore, if you have classes like this

class Foo {

27.3 A tour of basic C/C++ wrapping

SWIG-4.2 Documentation

class Bar : public Foo {

Yi

those classes are wrapped into a hierarchy of Java classes that reflect the same inheritance structure:

Bar b = new Bar();
Class ¢ = b.getClass();
System.out.println(c.getSuperclass().getName());

will of course display:

Furthermore, if you have functions like this

void spam(Foo *f);

then the Java function spam() accepts instances of Foo or instances of any other proxy classes derived from Foo.

Note that Java does not support multiple inheritance so any multiple inheritance in the C++ code is not going to work. A warning is given when multiple inheritance is detected and only the first
base class is used.

27.3.10 Pointers, references, arrays and pass by value

In C++, there are many different ways a function might receive and manipulate objects. For example:

void spaml(Foo *x); // Pass by pointer
void spam2(Foo &x); // Pass by reference
void spam3(Foo x); // Pass by value
void spamé(Foo x[1]); // Array of objects

In Java, there is no detailed distinction like this--specifically, there are only instances of classes. There are no pointers nor references. Because of this, SWIG unifies all of these types together
in the wrapper code. For instance, if you actually had the above functions, it is perfectly legal to do this from Java:

Foo f = new Foo(); // Create a Foo
example.spaml(f); // Ok. Pointer
example.spam2(f); // Ok. Reference
example.spam3(f); // Ok. Value.
example.spam4 (f); // Ok. Array (1 element)

Similar behavior occurs for return values. For example, if you had functions like this,

Foo *spam5();
Foo &spamé6();
Foo spam7();

then all three functions will return a pointer to some Foo object. Since the third function (spam?7) returns a value, newly allocated memory is used to hold the result and a pointer is returned
(Java will release this memory when the returned object's finalizer is run by the garbage collector).

27.3.10.1 Null pointers

Working with null pointers is easy. A Java null can be used whenever a method expects a proxy class or typewrapper class. However, it is not possible to pass null to C/C++ functions that
take parameters by value or by reference. If you try you will get a NullPointerException.

example.spaml (null); // Pointer - ok
example.spam2(null); // Reference - NullPointerException
example.spam3(null); // Value - NullPointerException

example.spamd (null); // Array - ok

For spaml and spam4 above the Javanull gets translated into a NULL pointer for passing to the C/C++ function. The converse also occurs, that is, NULL pointers are translated into null
Java objects when returned from a C/C++ function.

27.3.11 C++ overloaded functions

C++ overloaded functions, methods, and constructors are mostly supported by SWIG. For example, if you have two functions like this:

gmodule example

void foo(int);
void foo(char *c);

You can use them in Java in a straightforward manner:

example.foo(3); // foo(int)
example.foo("Hello"); // foo(char *c)

Similarly, if you have a class like this,

class Foo {
public:
Foo();
Foo(const Foo &);

27.3 A tour of basic C/C++ wrapping

251

SWIG-4.2 Documentation

you can write Java code like this:

Foo f = new Foo(); // Create a Foo
Foo g = new Foo(f); // Copy f

Overloading support is not quite as flexible as in C++. Sometimes there are methods that SWIG cannot disambiguate as there can be more than one C++ type mapping onto a single Java

type. For example:

void spam(int);
void spam(unsigned short);

Here both int and unsigned short map onto a Java int. Here is another example:

void foo(Bar *b);
void foo(Bar &b);

If declarations such as these appear, you will get a warning message like this:

example.i:12: Warning 515: Overloaded method spam(unsigned short) ignored.
Method spam(int) at example.i:11 used.

To fix this, you either need to either rename or ignore one of the methods. For example:

$rename(spam_ushort) spam(unsigned short);
void spam(int);
void spam(unsigned short); // Now renamed to spam ushort

or

%ignore spam(unsigned short);
void spam(int);
void spam(unsigned short); // Ignored

27.3.12 C++ default arguments

Any function with a default argument is wrapped by generating an additional function for each argument that is defaulted. For example, if we have the following C++:

%module example

void defaults(double d=10.0, int i=0);

The following methods are generated in the Java module class:

public class example {
public static void defaults(double d, int i) { ... }
public static void defaults(double d) { ... }
public static void defaults() { ... }

}

Itis as if SWIG had parsed three separate overloaded methods. The same approach is taken for static methods, constructors and member methods.

Compatibility note: Versions of SWIG prior to SWIG-1.3.23 wrapped these with a single wrapper method and so the default values could not be taken advantage of from Java. Further details

on default arguments and how to restore this approach are given in the more general Default arguments section.

27.3.13 C++ namespaces

SWIG is aware of named C++ namespaces and they can be mapped to Java packages, however, the default wrapping flattens the namespaces, effectively ignoring them. So by default, the

namespace names do not appear in the module nor do namespaces result in a module that is broken up into submodules or packages. For example, if you have a file like this,

%module example

namespace foo {
int fact(int n);
struct Vector {
double x, y, z;

it works in Java as follows:

int f = example.fact(3);
Vector v = new Vector();
v.setX(3.4);

double y = v.getY();

If your program has more than one namespace, name conflicts (if any) can be resolved using $rename For example:

$rename(Bar_spam) Bar::spam;

27.3 A tour of basic C/C++ wrapping

252

SWIG-4.2 Documentation

namespace Foo {
int spam();

}

namespace Bar {
int spam();

}

If you have more than one namespace and you want to keep their symbols separate, consider wrapping them as separate SWIG modules. Each SWIG module can be placed into a separate
package.

The default behaviour described above can be improved via the nspace feature. Note that it only works for classes, structs, unions and enums declared within a named C++ namespace. When
the nspace feature is used, the C++ namespaces are converted into Java packages of the same name. Proxy classes are thus declared within a package and this proxy makes numerous calls
to the JNI intermediary class which is declared in the unnamed package by default. As Java does not support types declared in a named package accessing types declared in an unnamed
package, the -package commandline option described earlier generally should be used to provide a parent package. So if SWIG is run using the -package com.myco option, a wrapped
class, MyWorld: :Material: :Color, can then be accessed as com.myco.MyWorld.Material.Color. If you don't specify a package, you will get the following warning:

example.i:16: Warning 826: The nspace feature is used on 'MyWorld::Material::Color' without -package. The generated code
may not compile as Java does not support types declared in a named package accessing types declared in an unnamed package.

If it is undesirable to have a single top level package, the nspace feature may be used without the -package commandline option (and the resulting warning ignored) if all of the types exposed
using SWIG are placed in a package using the nspace feature and the ‘jniclasspackage' pragma is used to specify a package for the JNI intermediary class.

If the resulting use of the nspace feature and hence packages results in a proxy class in one package deriving or using a proxy class from another package, you will need to open up the
visibility for the pointer constructor and getCcPtr method from the default 'protected' to 'public’ with the SWIG_JAVABODY_PROXY macro. See Java code typemaps.

27.3.14 C++ templates

C++ templates don't present a huge problem for SWIG. However, in order to create wrappers, you have to tell SWIG to create wrappers for a particular template instantiation. To do this, you
use the $template directive. For example:

%module example
3{
#include <utility>

%}

template<class T1, class T2>
struct pair {
typedef T1 first_type;
typedef T2 second_type;
T1 first;
T2 second;
pair();
pair(const Tl&, const T2&);
~pair();
Yi

%template(pairii) pair<int, int>;

In Java:

pairii p = new pairii(3, 4);
int first = p.getFirst();
int second = p.getSecond();

Obviously, there is more to template wrapping than shown in this example. More details can be found in the SWIG and C++ chapter.
27.3.15 C++ Smart Pointers
27.3.15.1 The shared_ptr Smart Pointer

The C++11 standard provides std: : shared_ptr which was derived from the Boost implementation, boost : : shared_ptr. Both of these are available for Java in the SWIG library and
usage is outlined in the shared_ptr smart pointer library section.

27.3.15.2 Generic Smart Pointers

In certain C++ programs, it is common to use classes that have been wrapped by so-called "smart pointers.” Generally, this involves the use of a template class that implements operator->
() like this:

template<class T> class SmartPtr {
T *operator->();

Then, if you have a class like this,

class Foo {
public:

int x;

int bar();
}i

A smart pointer would be used in C++ as follows:

SmartPtr<Foo> p = CreateFoo(); // Created somehow (not shown)
p->x = 3; // Foo::x
int y = p->bar(); // Foo::bar

27.3 A tour of basic C/C++ wrapping

253

SWIG-4.2 Documentation

To wrap this in Java, simply tell SWIG about the smartPtr class and the low-level Foo object. Make sure you instantiate SmartPtr using $template if necessary. For example:

gmodule example
%template(SmartPtrFoo) SmartPtr<Foo>;

Now, in Java, everything should just "work":

SmartPtrFoo p = example.CreateFoo(); // Create a smart-pointer somehow
p.setX(3); // Foo::x
int y = p.bar(); // Foo::bar

If you ever need to access the underlying pointer returned by operator->() itself, simply use the__deref__ () method. For example:

Foo f = p._ deref_ (); // Returns underlying Foo *

27.4 Further details on the generated Java classes

In the previous section, a high-level view of Java wrapping was presented. A key component of this wrapping is that structures and classes are wrapped by Java proxy classes and type
wrapper classes are used in situations where no proxies are generated. This provides a very natural, type safe Java interface to the C/C++ code and fits in with the Java programming
paradigm. However, a number of low-level details were omitted. This section provides a brief overview of how the proxy classes work and then covers the type wrapper classes. Finally enum
classes are covered. First, the crucial intermediary JNI class is considered.

27.4.1 The intermediary JNI class

In the "SWIG basics" and "SWIG and C++" chapters, details of low-level structure and class wrapping are described. To summarize those chapters, if you have a global function and class like
this

class Foo {
public:
int x;
int spam(int num, Foo* foo);
}i
void egg(Foo* chips);

then SWIG transforms the class into a set of low-level procedural wrappers. These procedural wrappers essentially perform the equivalent of this C++ code:

Foo *new_Foo() {
return new Foo();

void delete_Foo(Foo *f) {
delete f;

}

int Foo_x get(Foo *f) {
return f->x;

}

void Foo_x set(Foo *f, int value) {
f->x = value;

}

int Foo_spam(Foo *f, int num, Foo* foo) {
return f->spam(num, foo);

}

These procedural function names don't actually exist, but their functionality appears inside the generated JNI functions. The JNI functions have to follow a particular naming convention so the
function names are actually:

SWIGEXPORT jlong JNICALL Java_exampleJNI_new 1Foo(JNIEnv *jenv, jclass jcls);
SWIGEXPORT void JNICALL Java_exampleJNI_delete_lFoo(JNIEnv *jenv, jclass jcls,
jlong jargl);
SWIGEXPORT void JNICALL Java_exampleJNI_Foo_lx_ lset(JNIEnv *jenv, jclass jcls,
jlong jargl, jobject jargl_, jint jarg2);
SWIGEXPORT jint JNICALL Java_exampleJNI_Foo_ lx_lget(JNIEnv *jenv, jclass jcls,
jlong jargl, jobject jargl);
SWIGEXPORT jint JNICALL Java_exampleJNI_Foo_lspam(JNIEnv *jenv, jclass jcls,
jlong jargl, jobject jargl_, jint jarg2,
jlong jarg3, jobject jarg3_);
SWIGEXPORT void JNICALL Java_exampleJNI_egg(JNIEnv *jenv, jclass jcls,
jlong jargl, jobject jargl_);

Fo

every JNI C function there has to be a static native Java function. These appear in the intermediary JNI class:

class exampleJNI {

public final static native long new_Foo();

public final static native void delete Foo(long jargl);

public final static native void Foo_x_set(long jargl, Foo jargl_, int jarg2);

public final static native int Foo_x_get(long jargl, Foo jargl_);

public final static native int Foo_spam(long jargl, Foo jargl_, int jarg2,
long jarg3, Foo jarg3_);

public final static native void egg(long jargl, Foo jargl_);

This class contains the complete Java - C/C++ interface so all function calls go via this class. As this class acts as a go-between for all JNI calls to C/C++ code from the Java proxy classes,
type wrapper classes and module class, it is known as the intermediary JNI class.

You may notice that SWIG uses a Java long wherever a pointer or class object needs to be marshalled across the Java-C/C++ boundary. This approach leads to minimal JNI code which
makes for better performance as JNI code involves a lot of string manipulation. SWIG favours generating Java code over JNI code as Java code is compiled into byte code and avoids the
costly string operations needed in JNI code. This approach has a downside though as the proxy class might get collected before the native method has completed. You might notice above that
there is an additional parameters with a underscore postfix, eg jargl_. These are added in order to preventpremature garbage collection when marshalling proxy classes.

27.4 Further details on the generated Java classes 254

SWIG-4.2 Documentation

The functions in the intermediary JNI class cannot be accessed outside of its package. Access to them is gained through the module class for globals otherwise the appropriate proxy class.

The name of the intermediary JNI class can be changed from its default, that is, the module name with JNI appended after it. The module directive attribute jniclassname is used to achieve
this:

gmodule(jniclassname="name") modulename

If name is the same asmodulename then the module class name gets changed from modulename to modulenameModule.

27.4.1.1 The intermediary JNI class pragmas

The intermediary JNI class can be tailored through the use of pragmas, but is not commonly done. The pragmas for this class are:

Pragma Description

iniclassbase Base class for the intermediary JNI class

iniclasspackage Package in which to place the intermediary JNI class

iniclassclassmodifiers|(Class modifiers and class type for the intermediary JNI class

jniclasscode \Java code is copied verbatim into the intermediary JNI class

iniclassimports ‘éz\f/iii;g:e, usually one or more import statements, placed before the intermediary JNI class
iniclassinterfaces Comma separated interface classes for the intermediary JNI class

The pragma code appears in the generated intermediary JNI class where you would expect:

[jniclassimports pragma]
[jniclassclassmodifiers pragma] jniclassname extends [jniclassbase pragma]

implements [jniclassinterfaces pragma] {
[jniclasscode pragma]

. SWIG generated native methods ...

}

The jniclasscode pragma is quite useful for adding in a static block for loading the shared library / dynamic link library and demonstrates how pragmas work:

%pragma(java) jniclasscode=%{
static {
try {
System.loadLibrary("example");
} catch (UnsatisfiedLinkError e) {
System.err.println("Native code library failed to load. \n" + e);
System.exit(1l);
}
}
3}

Pragmas will take either "" or ${ %} as delimiters. For example, let's change the intermediary JNI class access to just the default package-private access.

%pragma(java) jniclassclassmodifiers="class"

All the methods in the intermediary JNI class will then not be callable outside of the package as the method modifiers have been changed from public access to default access. This is useful if
you want to prevent users calling these low level functions.

27.4.2 The Java module class

All global functions and variable getters/setters appear in the module class. For our example, there is just one function:

public class example {
public static void egg(Foo chips) {
exampleJNI.egg(Foo.getCPtr(chips), chips);
}
}

The module class is necessary as there is no such thing as a global in Java so all the C globals are put into this class. They are generated as static functions and so must be accessed as such
by using the module name in the static function call:

example.egg(new Foo());

The primary reason for having the module class wrapping the calls in the intermediary JNI class is to implement static type checking. In this case only a Foo can be passed to the egg function,
whereas any long can be passed to the egg function in the intermediary JNI class.

27.4.2.1 The Java module class pragmas

The module class can be tailored through the use of pragmas, in the same manner as the intermediary JNI class. The pragmas are similarly named and are used in the same way. The
complete list follows:

Pragma Description

modulebase Base class for the module class

moduleclassmodifiers||Class modifiers and class type for the module class

modulecode \Java code is copied verbatim into the module class

moduleimports ‘éz\f/iii;g:e, usually one or more import statements, placed before the module class
moduleinterfaces Comma separated interface classes for the module class

The pragma code appears in the generated module class like this:

[moduleimports pragma]
[modulemodifiers pragma] modulename extends [modulebase pragma]

27.4 Further details on the generated Java classes

255

SWIG-4.2 Documentation

implements [moduleinterfaces pragma] {
[modulecode pragma]
... SWIG generated wrapper functions ...

}

See The intermediary JNI class pragmas section for further details on using pragmas.
27.4.3 Java proxy classes

A Java proxy class is generated for each structure, union or C++ class that is wrapped. Proxy classes have also been called peer classes. The default proxy class for our previous example
looks like this:

public class Foo {
private transient long swigCPtr;
protected transient boolean swigCMemOwn;

protected Foo(long cPtr, boolean cMemoryOwn) {
swigCMemOwn = cMemoryOwn;
swigCPtr = cPtr;

}

protected static long getCPtr(Foo obj) {
return (obj == null) ? 0 : obj.swigCPtr;
}

protected void finalize() {
delete();
}

public synchronized void delete() {
if (swigCPtr != 0 && swigCMemOwn) {
swigCMemOwn = false;
exampleJNI.delete Foo(swigCPtr);
}
swigCPtr = 0;
}

public void setX(int value) {
exampleJNI.Foo_x_set(swigCPtr, this, value);

}

public int getX() {
return exampleJNI.Foo_x get(swigCPtr, this);

i

public int spam(int num, Foo foo) {
return exampleJNI.Foo_spam(swigCPtr, this, num, Foo.getCPtr(foo), foo);

}

public Foo() {
this(exampleJNI.new_Foo(), true);

}

This class merely holds a pointer to the underlying C++ object (swigCPtr). It also contains all the methods in the C++ class it is proxying plus getters and setters for public member
variables. These functions call the native methods in the intermediary JNI class. The advantage of having this extra layer is the type safety that the proxy class functions offer. It adds static
type checking which leads to fewer surprises at runtime. For example, you can see that if you attempt to use the spam() function it will only compile when the parameters passed are an int
and a Foo. From a user's point of view, it makes the class work as if it were a Java class:

Foo f = new Foo();
f.setX(3);
int y = f.spam(5, new Foo());

27.4.3.1 Memory management

Each proxy class has an ownership flag swigCMemOwn. The value of this flag determines who is responsible for deleting the underlying C++ object. If set to true, the proxy class's finalizer will
destroy the C++ object when the proxy class is garbage collected. If set to false, then the destruction of the proxy class has no effect on the C++ object.

When an object is created by a constructor or returned by value, Java automatically takes ownership of the result. On the other hand, when pointers or references are returned to Java, there is
often no way to know where they came from. Therefore, the ownership is set to false. For example:

class Foo {
public:
Foo();
Foo barl();
Foo &bar2()
Foo *bar2()

i
i

Foo f = new Foo(); // f.swigCMemOwn = true
Foo fl1 = f.barl(); // £l.swigCMemOwn = true
Foo f2 = f.bar2(); // f2.swigCMemOwn = false
Foo f£3 = f.bar3(); // £3.swigCMemOwn = false

This behavior for pointers and references is especially important for classes that act as containers. For example, if a method returns a pointer to an object that is contained inside another
object, you definitely don't want Java to assume ownership and destroy it!

For the most part, memory management issues remain hidden. However, there are situations where you might have to manually change the ownership of an object. For instance, consider
code like this:

27.4 Further details on the generated Java classes

http://java.sun.com/docs/books/jni/html/stubs.html

SWIG-4.2 Documentation

class Obj {};
class Node {
Obj *value;
public:
void set_value(Obj *v) { value = v; }
Yi

Now, consider the following Java code:

Node n = new Node(); // Create a node

{
Obj o = new Obj(); // Create an object
n.set_value(o); // set value

} // o goes out of scope

In this case, the Node n is holding a reference to o internally. However, SWIG has no way to know that this has occurred. The Java proxy class still thinks that it has ownership of o. As o has
gone out of scope, it could be garbage collected in which case the C++ destructor will be invoked and n will then be holding a stale-pointer to o. If you're lucky, you will only get a segmentation

fault.

To work around this, the ownership flag of o needs changing to false. The ownership flag is a private member variable of the proxy class so this is not possible without some customization of

the proxy class. This can be achieved by using a typemap to customise the proxy class with pure Java code as detailed later in the section on Java typemaps.

Sometimes a function will create memory and return a pointer to a newly allocated object. SWIG has no way of knowing this so by default the proxy class does not manage the returned object.

However, you can tell the proxy class to manage the memory if you specify the $newobject directive. Consider:

class Obj {...};
class Factory {
public:
static Obj *createObj() { return new Obj(); }
Yi

If we call the factory function, then we have to manually delete the memory:

Obj obj = Factory.createObj(); // obj.swigCMemOwn = false

obj.delete();

Now add in the %newobject directive:

%newobject Factory::createObj();

class Obj {...};
class Factory {
public:
static Obj *createObj() { return new Obj(); }
Yi

A call to delete() is no longer necessary as the garbage collector will make the C++ destructor call because swigCMemOwn is now true.

Obj obj = Factory.createObj(); // obj.swigCMemOwn = true;

Some memory management issues are quite tricky to fix and may only be noticeable after using for a long time. One such issue is premature garbage collection of an object created from Java
and resultant usage from C++ code. The section on typemap examples cover two such scenarios, Memory management for objects passed to the C++ layer and Memory management when

returning references to member variables

27.4.3.2 Inheritance

Java proxy classes will mirror C++ inheritance chains. For example, given the base class Base and its derived classDerived :

class Base {
public:

virtual double foo();
b

class Derived : public Base {
public:
virtual double foo();

}i

The base class is generated much like any other proxy class seen so far:

public class Base {
private transient long swigCPtr;
protected transient boolean swigCMemOwn;

protected Base(long cPtr, boolean cMemoryOwn) {
swigCMemOwn = cMemoryOwn;
swigCPtr = cPtr;

}

protected static long getCPtr(Base obj) {
return (obj == null) ? 0 : obj.swigCPtr;
}

protected void finalize() {
delete();
}

27.4 Further details on the generated Java classes

257

SWIG-4.2 Documentation

public synchronized void delete() {
if (swigCPtr != 0 && swigCMemOwn) {
swigCMemOwn = false;
exampleJNI.delete Base(swigCPtr);
}
swigCPtr = 0;
}

public double foo() {
return exampleJNI.Base_foo(swigCPtr, this);

}

public Base() {
this(exampleJNI.new_Base(), true);

}

The Derived class extends Base mirroring the C++ class inheritance hierarchy.

public class Derived extends Base {
private transient long swigCPtr;

protected Derived(long cPtr, boolean cMemoryOwn) {
super (exampleJNI.SWIGDerivedUpcast(cPtr), cMemoryOwn);
swigCPtr = cPtr;

}

protected static long getCPtr(Derived obj) {
return (obj == null) ? 0 : obj.swigCPtr;
}

protected void finalize() {
delete();
}

public synchronized void delete() {
if (swigCPtr != 0 && swigCMemOwn) {
swigCMemOwn = false;
exampleJNI.delete Derived(swigCPtr);
}
swigCPtr = 0;
super.delete();

}

public double foo() {
return exampleJNI.Derived_foo(swigCPtr, this);

}

public Derived() {
this(exampleJNI.new_Derived(), true);

}

Note the memory ownership is controlled by the base class. However each class in the inheritance hierarchy has its own pointer value which is obtained during construction. The
SWIGDerivedUpcast () call converts the pointer from a Derived * to aBase *. This is a necessity as C++ compilers are free to implement pointers in the inheritance hierarchy with
different values.

It is of course possible to extend Base using your own Java classes. If Derived is provided by the C++ code, you could for example add in a pure Java class Extended derived from Base.
There is a caveat and that is any C++ code will not know about your pure Java class Extended so this type of derivation is restricted. However, true cross language polymorphism can be
achieved using the directors feature.

27.4.3.3 Proxy classes and garbage collection

By default each proxy class has a delete() and a finalize() method. The finalize() method calls delete () which frees any malloc'd memory for wrapped C structs or calls the C++
class destructors. The idea is for delete() to be called when you have finished with the C/C++ object. Ideally you need not call delete (), but rather leave it to the garbage collector to call it
from the finalizer. When a program exits, the garbage collector does not guarantee to call all finalizers. An insight into the reasoning behind this can be obtained from Hans Boehm's
Destructors, Finalizers, and Synchronization paper. Depending on what the finalizers do and which operating system you use, this may or may not be a problem.

If the delete () call into JNI code is just for memory handling, there is not a problem when run on most operating systems, for example Windows and Unix. Say your JNI code creates memory
on the heap which your finalizers should clean up, the finalizers may or may not be called before the program exits. In Windows and Unix all memory that a process uses is returned to the
system on exit, so this isn't a problem. This is not the case in some operating systems like vxWorks. If however, your finalizer calls into JNI code invoking the C++ destructor which in turn
releases a TCP/IP socket for example, there is no guarantee that it will be released. Note that with long running programs the garbage collector will eventually run, thereby calling any
unreferenced object's finalizers.

Some not so ideal solutions are:

1. Call the system.runFinalizersOnExit (true) orRuntime.getRuntime().runFinalizersOnExit (true) to ensure the finalizers are called before the program exits. The
catch is that this is a deprecated function call as the documentation says:

This method is inherently unsafe. It may result in finalizers being called on live objects while other threads are
concurrently manipulating those objects, resulting in erratic behavior or deadlock.

In many cases you will be lucky and find that it works, but it is not to be advocated. Have a look at Java web site and search for runFinalizersOnExit.

2. From jdk1.3 onwards a new function, addshutdownHook (), was introduced which is guaranteed to be called when your program exits. You can encourage the garbage collector to call
the finalizers, for example, add this static block to the class that has the main () function:

static {
Runtime.getRuntime () .addShutdownHook (
new Thread() {
public void run() { System.gc(); System.runFinalization(); }

Although this usually works, the documentation doesn't guarantee that runFinalization() will actually call the finalizers. As the shutdown hook is guaranteed you could also make a

27.4 Further details on the generated Java classes 258

https://www.hpl.hp.com/techreports/2002/HPL-2002-335.html
https://www.oracle.com/technetwork/java/index.html

SWIG-4.2 Documentation

JNI call to clean up any resources that are being tracked by the C/C++ code.

3. Call the delete () function manually which will immediately invoke the C++ destructor. As a suggestion it may be a good idea to set the object to null so that should the object be
inadvertently used again a Java null pointer exception is thrown, the alternative would crash the JVM by using a null C pointer. For example given a SWIG generated class A:

A myA = new A();

// use myA ...

myA.delete();

// any use of myA here would crash the JVM

myA=null;

// any use of myA here would cause a Java null pointer exception to be thrown

The SWIG generated code ensures that the memory is not deleted twice, in the event the finalizers get called in addition to the manual delete () call.

4. Write your own object manager in Java. You could derive all SWIG classes from a single base class which could track which objects have had their finalizers run, then call the rest of
them on program termination. The section on Java typemaps details how to specify a pure Java base class.

See the How to Handle Java Finalization's Memory-Retention Issues article for alternative approaches to managing memory by avoiding finalizers altogether.

27.4.3.4 The premature garbage collection prevention parameter for proxy class marshalling

As covered earlier, the C/C++ struct/class pointer is stored in the proxy class as a Java long and when needed is passed into the native method where it is cast into the appropriate type. This
approach provides very fast marshalling but could be susceptible to premature garbage collection. Consider the following C++ code:

class Wibble {

b
void wobble(Wibble &w);

The module class contains the Java wrapper for the global wobble method:

public class example {

public static void wobble(Wibble w) {
exampleJNI.wobble(Wibble.getCPtr(w), w);
}
}

where example is the name of the module. All native methods go through the intermediary class which has the native method declared as such:

public class exampleJNI {

public final static native void wobble(long jargl, Wibble jargl);
}

The second parameter, jargl_, is the premature garbage collection prevention parameter and is added to the native method parameter list whenever a C/C++ struct or class is marshalle

d as
a Java long. In order to understand why, consider the alternative where the intermediary class method is declared without the additional parameter:

public class exampleJNI {

public final static native void wobble(long jargl);

}

and the following simple call to wobble:

{
Wibble w = new Wibble();
example.wobble(w);

}

The hotspot compiler effectively sees something like:

Wibble w = new Wibble();

long w_ptr = Wibble.getCPtr(w);
// w is no longer reachable
exampleJNI.wobble(w_ptr);

The wibble object is no longer reachable after the point shown as in this bit of code, the Wwibble object is not referenced again after this point. This means that it is a candidate for garbage
collection. Should wobble be a long running method, it is quite likely that the finalizer for the wibble instance will be called. This in turn will call its underlying C++ destructor which is
obviously disastrous while the method wobble is running using this object. Even if wobble is not a long running method, it is possible for the wibble instance to be finalized. By passing the
Wibble instance into the native method, it will not be finalized as the JVM guarantees not to finalize any objects until the native method returns. Effectively, the code then becomes

Wibble w = new Wibble();

long w_ptr = Wibble.getCPtr(w);
exampleJNI.wobble(w_ptr, w);

// w is no longer reachable

and therefore there is no possibility of premature garbage collection. In practice, this premature garbage collection was only ever observed in Sun's server JVM from jdk-1.3 onwards and in
Sun's client JVM from jdk-1.6 onwards.

The premature garbage collection prevention parameter for proxy classes is generated by default whenever proxy classes are passed by value, reference or with a pointer. The implementation
for this extra parameter generation requires the "jtype" typemap to contain 1ong and the "jstype" typemap to contain the name of a proxy class.

The additional parameter does impose a slight performance overhead and the parameter generation can be suppressed globally with the -nopgcpp commandline option. More selective
suppression is possible with the 'nopgcpp' attribute in the "jtype" Java typemap. The attribute is a flag and so should be set to "1" to enable the suppression, or it can be omitted or set to "0" to

27.4 Further details on the generated Java classes

259

http://www.devx.com/Java/Article/30192

SWIG-4.2 Documentation

disable. For example:

%typemap(jtype, nopgcpp="1") Wibble & "long"

Compatibility note: The generation of this additional parameter did not occur in versions prior to SWIG-1.3.30.
27.4.3.5 Single threaded applications and thread safety

Single threaded Java applications using JNI need to consider thread safety. The same applies for the C# module where the .NET wrappers use Plnvoke. Consider the C++ class:

class Test {

string str;
public:

Test() : str("initial") {}
b

and the Java proxy class generated by SWIG:

public class Test {
private transient long swigCPtr;
protected transient boolean swigCMemOwn;

protected Test(long cPtr, boolean cMemoryOwn) {
swigCMemOwn = cMemoryOwn;
swigCPtr = cPtr;

}

protected static long getCPtr(Test obj) {
return (obj == null) ? 0 : obj.swigCPtr;
}

protected void finalize() {
delete();
}

// call C++ destructor
public synchronized void delete() {
if (swigCPtr != 0 && swigCMemOwn) {
swigCMemOwn = false;
exampleJNI.delete Test(swigCPtr);
}
swigCPtr = 0;
}

// Call C++ constructor
public Test() {
this(exampleJNI.new_Test(), true);

}

It has two methods that call JNI methods, namely, exampleJNI.new_Test () for the C++ constructor andexampleJNI.delete Test () for the C++ destructor. If the garbage collector
collects an instance of this class, ie delete () is not explicitly called, then the C++ destructor will be run in a different thread to the main thread. This is because when an object is marked for
garbage collection, any objects with finalizers are added to a finalization queue and the objects in the finalization queue have their finalize () methods run in a separate finalization thread.
Therefore, if the C memory allocator is not thread safe, then the heap will get corrupted sooner or later, when a concurrent C++ delete and new are executed. It is thus essential, even in single
threaded usage, to link to the C multi-thread runtime libraries, for example, use the /MD option for Visual C++ on Windows. Alternatively, lock all access to C++ functions that have heap
allocation/deallocation.

Note that some of the STL in Visual C++ 6 is not thread safe, so although code might be linked to the multithread runtime libraries, undefined behaviour might still occur in a single threaded

Java program. Similarly some older versions of Sun Studio have bugs in the multi-threaded implementation of the std::string class and so will lead to undefined behaviour in these supposedly
single threaded Java applications.

The following innocuous Java usage of Test is an example that will crash very quickly on a multiprocessor machine if the JNI compiled code is linked against the single thread C runtime
libraries.

for (int i=0; i<100000; i++) {
System.out.println("Iteration " + i);
for (int k=0; k<10; k++) {
Test test = new Test();
}
System.gc();
}

27.4.4 Type wrapper classes

The generated type wrapper class, for say an int *, looks like this:

public class SWIGTYPE_ p_int {
private transient long swigCPtr;

protected SWIGTYPE p_int(long cPtr, boolean bFutureUse) {
swigCPtr = cPtr;
}

protected SWIGTYPE p int() {
swigCPtr = 0;
}

protected static long getCPtr(SWIGTYPE p int obj) {
return obj.swigCPtr;

}

27.4 Further details on the generated Java classes

SWIG-4.2 Documentation

The methods do not have public access, so by default it is impossible to do anything with objects of this class other than pass them around. The methods in the class are part of the inner
workings of SWIG. If you need to mess around with pointers you will have to use some typemaps specific to the Java module to achieve this. The section on Java typemaps details how to

modify the generated code.

Note that if you use a pointer or reference to a proxy class in a function then no type wrapper class is generated because the proxy class can be used as the function parameter. If however,

you need anything more complicated like a pointer to a pointer to a proxy class then a typewrapper class is generated for your use.

Note that SWIG generates a type wrapper class and not a proxy class when it has not parsed the definition of a type that gets used. For example, say SWIG has not parsed the definition of
class Snazzy because it is in a header file that you may have forgotten to use the $include directive on. Should SWIG parse snazzy * being used in a function parameter, it will then

generates a type wrapper class around a Snazzy pointer. Also recall from earlier that SWIG will use a pointer when a class is passed by value or by reference:

void spam(Snazzy *x, Snazzy &y, Snazzy z);

Should SWIG not know anything about Snazzy then a SWIGTYPE_p_Snazzy must be used for all 3 parameters in thespam function. The Java function generated is:

}

public static void spam(SWIGTYPE_p_Snazzy x, SWIGTYPE p_ Snazzy y, SWIGTYPE p Snazzy z) {

Note that typedefs are tracked by SWIG and the typedef name is used to construct the type wrapper class name. For example, consider the case where Snazzy is a typedef to anint whi

SWIG does parse:

ch

typedef int Snazzy;
void spam(Snazzy *xX, Snazzy &y, Snazzy z);

Because the typedefs have been tracked the Java function generated is:

public static void spam(SWIGTYPE p_int x, SWIGTYPE p_ int y, int z) { ... }

27.4.5 Enum classes

SWIG can generate three types of enum classes. The Enumerations section discussed these but omitted all the details. The following sub-sections detail the various types of enum classes

that can be generated.
27.4.5.1 Typesafe enum classes

The following example demonstrates the typesafe enum classes which SWIG generates:

%include "enumtypesafe.swg"
%javaconst(1);

enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

The following is the code that SWIG generates:

public final class Beverage {
public final static Beverage ALE = new Beverage("ALE");

public final static Beverage STOUT = new Beverage("STOUT");

public final int swigValue() {
return swigValue;

}

public String toString() {
return swigName;

}

public static Beverage swigToEnum(int swigValue) {
if (swigValue < swigValues.length && swigValue >= 0 &&
swigValues|[swigValue].swigValue == swigValue)
return swigValues|[swigValue];
for (int i = 0; i < swigValues.length; i++)
if (swigValues[i].swigValue == swigValue)
return swigValues[i];

i

private Beverage(String swigName) {
this.swigName = swigName;
this.swigValue = swigNext++;

}

private Beverage(String swigName, int swigValue) {
this.swigName = swigName;
this.swigValue = swigValue;
swigNext = swigValue+l;

}

private Beverage(String swigName, Beverage swigEnum) {
this.swigName = swigName;
this.swigValue = swigEnum.swigValue;
swigNext = this.swigValue+l;

}

private static int swigNext = 0;
private final int swigValue;
private final String swigName;

27.4 Further details on the generated Java classes

public final static Beverage LAGER = new Beverage("LAGER", 10);

public final static Beverage PILSNER = new Beverage("PILSNER");
public final static Beverage PILZ = new Beverage("PILZ", PILSNER);

private static Beverage[] swigValues = { ALE, LAGER, STOUT, PILSNER,

throw new IllegalArgumentException("No enum " + Beverage.class + " with value " +

swigValue);

PILZ };

261

SWIG-4.2 Documentation

As can be seen, there are a fair number of support methods for the typesafe enum pattern. The typesafe enum pattern involves creating a fixed number of static instances of the enum class.
The constructors are private to enforce this. Three constructors are available - two for C/C++ enums with an initializer and one for those without an initializer. Note that the two enums with
initializers, LAGER and PILZ, each call one the two different initializer constructors. In order to use one of these typesafe enums, the swigToEnum static method must be called to return a
reference to one of the static instances. The JNI layer returns the enum value from the C/C++ world as an integer and this method is used to find the appropriate Java enum static instance.
The swigValue method is used for marshalling in the other direction. The tostring method is overridden so that the enum name is available.

27.4.5.2 Proper Java enum classes

The following example demonstrates the Java enums approach:

%include "enums.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

SWIG will generate the following Java enum:

public enum Beverage {
ALE,
LAGER(10),
STOUT,
PILSNER,
PILZ (PILSNER);

public final int swigValue() {
return swigValue;

}

public static Beverage swigToEnum(int swigValue) {
Beverage[] swigValues = Beverage.class.getEnumConstants();
if (swigValue < swigValues.length && swigValue >= 0 &&
swigValues|[swigValue].swigValue == swigValue)
return swigValues[swigValue];
for (Beverage swigEnum : swigValues)
if (swigEnum.swigValue == swigValue)
return swigEnum;
throw new IllegalArgumentException("No enum " + Beverage.class +
" with value " + swigValue);

}

private Beverage() {
this.swigValue = SwigNext.next++;

}

private Beverage(int swigValue) {
this.swigValue = swigValue;
SwigNext.next = swigValue+l;

}

private Beverage(Beverage swigEnum) {
this.swigValue = swigEnum.swigValue;
SwigNext.next = this.swigValue+l;

}
private final int swigValue;
private static class SwigNext {

private static int next = 0;

}

The enum items appear first. Like the typesafe enum pattern, the constructors are private. The constructors are required to handle C/C++ enums with initializers. The next variable is in the
swigNext inner class rather than in the enum class as static primitive variables cannot be modified from within enum constructors. Marshalling between Java enums and the C/C++ enum
integer value is handled via the swigToEnum and swigValue methods. All the constructors and methods in the Java enum are required just to handle C/C++ enums with initializers. These
needn't be generated if the enum being wrapped does not have any initializers and the Simpler Java enums for enums without initializers section describes how typemaps can be used to
achieve this.

27.4.5.3 Type unsafe enum classes

The following example demonstrates type unsafe enums:

%include "enumtypeunsafe.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

SWIG will generate the following simple class:

public final class Beverage {
public final static int ALE = 0;
public final static int LAGER = 10;
public final static int STOUT = LAGER + 1;
public final static int PILSNER = STOUT + 1;
public final static int PILZ = PILSNER;

27.4.6 Interfaces
By default SWIG wraps all C++ classes as Java classes. As Java only supports derivation from a single base class, SWIG has to ignore all bases except the first when a C++ class inherits
from more than one base class. However, there is a family of SWIG macros that change the default wrapping and allows a C++ class to be wrapped as a Java interface instead of a Java class.
These macros provide a way to support some sort of multiple inheritance as there is no limit to the number of interfaces that a Java class can inherit from.

When a C++ class is wrapped as a Java interface, a Java proxy class is still needed. The swiginterface. i library file provides three macros for marking a C++ class to be wrapped as a
Java interface. There is more than one macro in order to provide a choice for choosing the Java interface and Java proxy names.

27.4 Further details on the generated Java classes

SWIG-4.2 Documentation

Interface Macro Name Description

$interface(CTYPE) For C++ class CTYPE, proxy class name is unchanged without any suffix added, interface name has swigInterface added as a suffix.
¢interface_impl (CTYPE) For C++ class CTYPE , proxy class name hasswigImpl added as a suffix, interface name has no added suffix.
%interface_custom("PROXY", For C++ class CTYPE, proxy class name is given by the stringPROXY, interface name is given by the stringINTERFACE. The PROXY and
"INTERFACE", CTYPE) INTERFACE names can use the string formatting functions used in $rename.

The table below has a few examples showing the resulting proxy and interface names for a C++ class called Base.

Example Usage Proxy Class Name|[Interface Class Name
¢interface(Base) Base BaseSwigInterface
%$interface_impl (Base) BaseSwigImpl Base
$interface_custom("BaseProxy", "IBase", Base) BaseProxy IBase
$interface_custom("$sProxy", "IBase", Base) BaseProxy IBase
$interface_custom("%sProxy", "$sInterface", Base) BaseProxy BaseProxyInterface
$interface custom("$sProxy", "$(rstrip:[Proxy])sInterface", Base)“BaseProxy BaseInterface

The 2nd last example shows the names used in the string formatting functions. The input for PROXY that "$s" expands to is the proxy name, that is, Base. The input for INTERFACE that "%s"
expands to is the proxy name, that is, BaseProxy .

The last example shows rstrip and in this case strips theProxy suffix and then adds on Interface.

Consider the following C++ code:

namespace Space {

struct Basel {
virtual void Methodl();
virtual Basel();

Yi

struct Base2 {
virtual void Method2();
virtual Base2();

Yi

struct Derived : Basel, Base2 {

}i

void UseBases(const Basel &bl, const Base2 &b2);

By default all classes are wrapped and are available in Java, but, Derived has all bases ignored except the first. SWIG generates a warning for the above code:

example.i:12: Warning 813: Warning for Derived, base Base2 ignored.
Multiple inheritance is not supported in Java.

If we decide to wrap the two base classes as interfaces and add the following before SWIG parses the above example code:

%include <swiginterface.i>
$interface_impl (Spac Basel);
$interface_impl(Space::Base2);

then two interface files are generated, Base1.java and Base2.java in addition to proxy class files, Base1Swiglmpl.java and Base2Swiglmpl.java. The contents of interface file Base1.java for
Basel is shown below:

public interface Basel {
long Basel GetInterfaceCPtr();
void Methodl();

The proxy class in Base1Swiglmpl.java for Base1 is as it would have been if $interface was not used, except the name has changed to BaselswigImpl and it implements the appropriate
base:

public class BaselSwigImpl implements Basel {
public long Basel GetInterfaceCPtr() {
return exampleJNI.BaselSwigImpl Basel_ GetInterfaceCPtr(swigCPtr);
}

public void Methodl() {
exampleJNI.BaselSwigImpl Methodl(swigCPtr, this);

In fact any class using Base as an immediate base class will now implement the interface instead of deriving from it (or ignoring the base in the case of multiple base classes). Hence the
Derived proxy class will now implement both bases:

public class Derived implements Basel, Base2 {
public long Basel GetInterfaceCPtr() {
return exampleJNI.Derived Basel GetInterfaceCPtr(swigCPtr);

}

public long Base2 GetInterfaceCPtr() {
return exampleJNI.Derived Base2_GetInterfaceCPtr(swigCPtr);

}

public void Methodl() {
exampleJNI.Derived Methodl(swigCPtr, this);
}

27.4 Further details on the generated Java classes

SWIG-4.2 Documentation

public void Method2() {
exampleJNI.Derived Method2(swigCPtr, this);
}

The proxy class has methods added to it, from the implemented bases, so that the underlying C++ implementation can be called. In the example above, Method1 and Method2 have been
added from the implemented bases. If a method is ignored in the base, such as via $ignore, then that method will be excluded from the interface and there will not be an additional method
added to the proxy class implementing that interface.

The Java interface only ever contains virtual and non-virtual instance methods from the wrapped C++ class. Any static methods, enums or variables in the wrapped C++ class are not
supported and are not added to the interface. They are of course still available in the Java proxy class.

Wherever a class marked as an interface is used, such as the UseBases method in the example, the interface name is used as the type in the Java layer:

public static void UseBases(Basel bl, Base2 b2) {
exampleJNI.UseBases(bl.Basel GetInterfaceCPtr(), bl, b2.Base2_GetInterfaceCPtr(), b2);

}

Note that each Java interface has a method added to obtain the correct C++ pointer for passing to the native function - Basel_GetInterfaceCPtr for Basel. This method is similar to the
getCPtr method in the proxy classes. In fact, as shown above in the Derived class, the proxy classes implement this generated interface by calling a native method (
Derived_Basel_GetInterfaceCPtr) which calls an appropriate C++ cast of the pointer up the inheritance chain.

The interface macros are implemented using the interface feature and typemaps. For example:

%define %interface(CTYPE...)

%feature("interface", name="%sSwigInterface") CTYPE;
INTERFACE_TYPEMAPS (CTYPE)

%enddef

The feature accepts one attribute called name, which is the name of the Java interface mentioned earlier. The INTERFACE_TYPEMAPS macro implements the typemaps and can be viewed in
the swiginterface. i file and contain the usual Java typemaps for generating code plus the javainterfacecode typemap which is only used when a class is marked with the
interface feature. See Java code typemaps for details.

27.5 Cross language polymorphism using directors

Proxy classes provide a natural, object-oriented way to wrap C++ classes. as described earlier, each proxy instance has an associated C++ instance, and method calls from Java to the proxy
are passed to the C++ instance transparently via C wrapper functions.

This arrangement is asymmetric in the sense that no corresponding mechanism exists to pass method calls down the inheritance chain from C++ to Java. In particular, if a C++ class has been
extended in Java (by deriving from the proxy class), these classes will not be visible from C++ code. Virtual method calls from C++ are thus not able to access the lowest implementation in the
inheritance chain.

SWIG can address this problem and make the relationship between C++ classes and proxy classes more symmetric. To achieve this goal, new classes called directors are introduced at the
bottom of the C++ inheritance chain. The job of the directors is to route method calls correctly, either to C++ implementations higher in the inheritance chain or to Java implementations lower
in the inheritance chain. The upshot is that C++ classes can be extended in Java and from C++ these extensions look exactly like native C++ classes. Neither C++ code nor Java code needs
to know where a particular method is implemented: the combination of proxy classes, director classes, and C wrapper functions transparently takes care of all the cross-language method
routing.

27.5.1 Enabling directors

The director feature is disabled by default. To use directors you must make two changes to the interface file. First, add the "directors" option to the %module directive, like this:

gmodule (directors="1") modulename

Without this option no director code will be generated. Second, you must use the %feature("director") directive to tell SWIG which classes and methods should get directors. The %feature
directive can be applied globally, to specific classes, and to specific methods, like this:

// generate directors for all classes that have virtual methods
%feature("director");

// generate directors for the virtual methods in class Foo
%feature("director") Foo;

You can use the %feature("nodirector") directive to turn off directors for specific classes or methods. So for example,

%feature("director") Foo;
%feature("nodirector") Foo::bar;

will generate directors for the virtual methods of class Foo except bar().

Directors can also be generated implicitly through inheritance. In the following, class Bar will get a director class that handles the methods one() and two() (but not three()):

%feature("director") Foo;
class Foo {
public:
virtual void one();
virtual void two();

}i
class Bar: public Foo {
public:

virtual void three();
}i

27.5.2 Director classes

For each class that has directors enabled, SWIG generates a new class that derives from both the class in question and a special Swig: :Director class. These new classes, referred to as
director classes, can be loosely thought of as the C++ equivalent of the Java proxy classes. The director classes store a pointer to their underlying Java proxy classes.

27.5 Cross language polymorphism using directors

SWIG-4.2 Documentation

For simplicity let's ignore the swig: :Director class and refer to the original C++ class as the director's base class. By default, a director class extends all virtual methods in the inheritance
chain of its base class (see the preceding section for how to modify this behavior). Virtual methods that have a final specifier are unsurprisingly excluded. Thus the virtual method calls, whether
they originate in C++ or in Java via proxy classes, eventually end up in at the implementation in the director class. The job of the director methods is to route these method calls to the
appropriate place in the inheritance chain. By "appropriate place" we mean the method that would have been called if the C++ base class and its Java derived classes were seamlessly
integrated. That seamless integration is exactly what the director classes provide, transparently skipping over all the messy JNI glue code that binds the two languages together.

In reality, the "appropriate place" is one of only two possibilities: C++ or Java. Once this decision is made, the rest is fairly easy. If the correct implementation is in C++, then the lowest
implementation of the method in the C++ inheritance chain is called explicitly. If the correct implementation is in Java, the Java APl is used to call the method of the underlying Java object
(after which the usual virtual method resolution in Java automatically finds the right implementation).

27.5.3 Overhead and code bloat

Enabling directors for a class will generate a new director method for every virtual method in the class' inheritance chain. This alone can generate a lot of code bloat for large hierarchies.
Method arguments that require complex conversions to and from Java types can result in large director methods. For this reason it is recommended that directors are selectively enabled only
for specific classes that are likely to be extended in Java and used in C++.

Although directors make it natural to mix native C++ objects with Java objects (as director objects), one should be aware of the obvious fact that method calls to Java objects from C++ will be
much slower than calls to C++ objects. Additionally, compared to classes that do not use directors, the call routing in the director methods adds a small overhead. This situation can be
optimized by selectively enabling director methods (using the %feature directive) for only those methods that are likely to be extended in Java.

27.5.4 Simple directors example

Consider the following SWIG interface file:

gmodule(directors="1") example;
%feature("director") DirectorBase;

class DirectorBase {
public:
virtual ~DirectorBase() {}
virtual void upcall method() {}
}i

void callup(DirectorBase *director) {
director->upcall_method();

}

The following DirectorDerived Java class is derived from the Java proxy class DirectorBase and overrides upcall_method (). When C++ code invokesupcall_method() , the
SWIG-generated C++ code redirects the call via JNI to the Java DirectorDerived subclass. Naturally, the SWIG generated C++ code and the generated Java intermediary class marshal
and convert arguments between C++ and Java when needed.

class DirectorDerived extends DirectorBase {
@override
public void upcall_method() {
System.out.println("DirectorDerived.upcall method() invoked.");
}
}

Running the following Java code

DirectorDerived director = new DirectorDerived();
example.callup(director);

will result in the following being output:

DirectorDerived.upcall method() invoked.

27.5.5 Director threading issues

Depending on your operating system and version of Java and how you are using threads, you might find the JVM hangs on exit. There are a couple of solutions to try out. The preferred
solution requires jdk-1.4 and later and uses AttachCurrentThreadAsDaemon instead of AttachCurrentThread whenever a call into the JVM is required. This can be enabled by defining
the SWIG_JAVA_ATTACH_CURRENT_THREAD_AS_DAEMON macro when compiling the C++ wrapper code. For older JVMs define SWIG_JAVA_NO_DETACH_CURRENT_THREAD
instead, to avoid the DetachCurrentThread call but this will result in a memory leak instead. For further details inspect the source code in the java/director.swg library file.

Macros can be defined on the commandline when compiling your C++ code, or alternatively added to the C++ wrapper file as shown below:

%insert("runtime") %{
#define SWIG_JAVA NO_DETACH_CURRENT THREAD
%}

27.5.6 Director performance tuning

When a new instance of a director (or subclass) is created in Java, the C++ side of the director performs a runtime check per director method to determine if that particular method is
overridden in Java or if it should invoke the C++ base implementation directly. Although this makes initialization slightly more expensive, it is generally a good overall tradeoff.

However, if all director methods are expected to usually be overridden by Java subclasses, then initialization can be made faster by avoiding these checks via the assumeoverride attribute.
For example:

%feature("director", assumeoverride=1) Foo;

The disadvantage is that invocation of director methods from C++ when Java doesn't actually override the method will require an additional call up into Java and back to C++. As such, this
option is only useful when overrides are extremely common and instantiation is frequent enough that its performance is critical.

27.5.7 Java exceptions from directors

With directors routing method calls to Java, and proxies routing them to C++, the handling of exceptions is an important concern. The default behavior for Java exceptions thrown in a director
method overridden in Java is to store the thrown Java exception into a SWIG defined Swig: :DirectorException C++ class exception in the C++ layer and then throw this C++ exception.

Of course, should this exception be thrown, your C++ code must catch it and handle it before returning back to Java. The default generated code does not attempt to handle the C++
exception, but there is a simple way to make this all work by catching the C++ exception and extracting the original Java exception by using $catches for Swig: :DirectorException.

27.5 Cross language polymorphism using directors

265

SWIG-4.2 Documentation

Consider the example shown earlier with a modification to the upcall_method Java method to throw a Java exception:

class DirectorDerived extends DirectorBase {
@Ooverride
public void upcall method() {
System.out.println("DirectorDerived.upcall method() invoked.");
throw new RuntimeException("There was a problem!");

}

Now, by default, the JVM will abort when example.callup(director) is called as the C++Swig: :DirectorException (storing the Java exception) is thrown and not handled by the
callup method. Needless to say this is not very user friendly and so the recommendation is to add the following simple $catches directive before SWIG parses the callup function:

%catches(Swig::DirectorException) callup;

Or target all wrapped methods using:

%catches(Swig::DirectorException);

This tells SWIG to generate a C++ catch handler using some code from the throws typemap for Swig: :DirectorException that SWIG supplies by default, see Exception handling with
%catches. This typemap code is written to simply catch the C++ Swig: :DirectorException class and immediately return to Java throwing the original Java exception that it has stored.
The net result is a stack trace containing the original Java exception including the location that the exception was thrown from.

DirectorDerived.upcall method() invoked.

Exception in thread "main" java.lang.RuntimeException: There was a problem!
at DirectorDerived.upcall method(runme.java:4)
at exampleJNI.SwigDirector DirectorBase_upcall method(exampleJNI.java:20)
at exampleJNI.callup(Native Method)
at example.callup(example.java:12)
at runme.main(runme.java:21l)

More on the Swig: :DirectorException class can be found in the next section which details how to customize the handling of director exceptions.
27.5.7.1 Customizing director exceptions

This section is for advanced customization of director exceptions. The recommendation for most users is to use the simple $catches directive described above as it should be sufficient for
most users needs.

The conversion of Java exceptions into C++ exceptions can be customized in two different ways using the director:except feature. In the first approach, a code block is attached to each
director method to handle the mapping of Java exceptions into C++ exceptions. The code block is generated just after the call up from the C++ director method into the overloaded method in
Java. Its primary function is to check if a Java exception has been thrown and then handle it in C++. The example below converts a java.lang.IndexOutOfBoundsException into a C++
std::out_of_range exception and converts a user's JavaMyJavaException into a C++MyCppException exception. If the Java exception doesn't match either of these, a fallback
std::runtime_error C++ exception is thrown.

%feature("director:except") MyClass::dirmethod(int x) {
jthrowable $error = jenv->ExceptionOccurred();
if ($error) {
if (Swig::ExceptionMatches(jenv, $error, "java/lang/IndexOutOfBoundsException"))
throw std::out_of_range(Swig::JavaExceptionMessage(jenv, $error).message());
if (Swig::ExceptionMatches(jenv, $error, "S$packagepath/MyJavaException"))
throw MyCppException(Swig::JavaExceptionMessage(jenv, S$error).message());
throw std::runtime_error("Unexpected exception thrown in MyClass::dirmethod");
}
}

class MyClass {

public:
/** Throws either a std::out_of_ range or MyCppException on error */
virtual void dirmethod(int x);
virtual ~MyClass();

}i

A few special variables are expanded within the director:except feature.

« The special variable serror is expanded into a unique variable name (swigerror) and should be used for the assignment of the jthrowable exception that occurred.

« The special variable $packagepath is replaced by the outer package provided for SWIG generation by the -package option.

« The special variable $directorthrowshandlers is not shown above, but is replaced by applicable "directorthrows" typemap contents (covered later in this section).

« The special variable $null is not shown above, but is replaced by a suitable default constructed object for returning from the director method (or nothing if the director method has a void
return).

Utility functions/classes in director.swg are provided to aid the exception conversion as follows:

namespace Swig {

// Helper method to determine if a Java throwable matches a particular Java class type
// Note side effect of clearing any pending exceptions
bool ExceptionMatches(JNIEnv *jenv, jthrowable throwable, const char *classname);

// Helper class to extract the exception message from a Java throwable
class JavaExceptionMessage {
public:

JavaExceptionMessage (JNIEnv *jenv, jthrowable throwable);

// Return a C string of the exception message in the jthrowable passed in the constructor
// If no message is available, null_string is return instead
const char *message(const char *null_string =
"Could not get exception message in JavaExceptionMessage") const;
}i

// C++ Exception class for handling Java exceptions thrown during a director method Java upcall
class DirectorException : public std::exception {
public:

27.5 Cross language polymorphism using directors

SWIG-4.2 Documentation

// Construct exception from a Java throwable
DirectorException(JNIEnv *jenv, jthrowable throwable);

// More general constructor for handling as a java.lang.RuntimeException
DirectorException(const char *msg);

// Return exception message extracted from the Java throwable
const char *what() const throw();

// Reconstruct and raise/throw the Java Exception that caused the DirectorException
// Note that any error in the JNI exception handling results in a Java RuntimeException
void throwException(JNIEnv *jenv) const;

// Create and throw the DirectorException
static void raise(JNIEnv *jenv, jthrowable throwable) {
throw DirectorException(jenv, throwable);

The utility function Swig: : ExceptionMatches and class Swig: : JavaExceptionMessage are provided to simplify writing code for wrappers that use the director:except feature. The
function Swig: : ExceptionMatches matches the type of the jthrowable thrown against a fully qualified JNI style class name, such as "java/lang/IOError". If the throwable class is
the same type, or derives from the given type, Swig: : ExceptionMatches will return true. Care must be taken to provide the correct fully qualified name, since for wrapped exceptions the
generated proxy class will have an additional package qualification, depending on the '-package' argument and use of the nspace feature. The utility class Swig: : JavaExceptionMessage
is a holder providing access to the message from the thrown Java exception. The message () method returns the exception message as a const char *, which is only valid during the
lifetime of the holder. Any code using this message needs to copy it, for example into a std::string or a newly constructed C++ exception.

Using the first approach above to write handlers for a large number of methods will require repetitive duplication of the director:except feature code for each director method. To mitigate
this, a second approach is provided via typemaps in a fashion analogous to the "throws" typemap . The "throws" typemap provides a way to map all the C++ exceptions listed in a method's
defined exceptions (either from a C++ exception specification or a $catches feature) into Java exceptions. The "directorthrows" typemap provides the inverse mapping and should contain
code to convert a suitably matching Java exception into a C++ exception. Only use this typemap if you wish to write custom conversions of Java exceptions into C++ exceptions and apply them
to many different methods. The default handling which uses the swig: :DirectorException class should otherwise meet your needs.

The example below converts a Java java.lang.IndexOutOfBoundsException exception to the typemap's type, thatis a std: :out_of_range C++ exception:

$typemap(directorthrows) std::out _of range %{
if (Swig::ExceptionMatches(jenv, $error, "java/lang/IndexOutOfBoundsException")) {
throw std::out_of_range(Swig::JavaExceptionMessage(jenv, $error).message());
}
%}

The "directorthrows" typemap is then used in conjunction with the director:except feature if the $directorthrowshandlers special variable is used in the code block. Consider the
following, which also happens to be the default:

%feature("director:except") %{
jthrowable $error = jenv->ExceptionOccurred();
if ($error) {
$directorthrowshandlers
Swig::DirectorException::raise(jenv, $error);
}
%}

where Swig: :DirectorException: :raise is the helper method to throw a C++ Swig: :DirectorException, see above. The code generated from the director:except feature has
the $directorthrowshandlers special variable replaced with the code in the relevant "directorthrows" typemaps, for each and every exception defined for the method. The relevant
exceptions can be defined either with a C++ exception specification or $catches as described for the "throws" typemap .

Let's try and put all this together by considering the following director method:

struct X {
virtual void doSomething(int index) throw (std::out of_ range);

OR

%$catches(std::out_of_range) X::doSomething;
struct X {
virtual void doSomething(int index);

When combined with the default director:except feature and the "directorthrows" typemap above, the resulting code generated in the director method after calling up to Java will be:

jthrowable swigerror = jenv->ExceptionOccurred();
if (swigerror) {
if (Swig::ExceptionMatches(jenv, swigerror, "java/lang/IndexOutOfBoundsException")) {
throw std::out_of range(Swig::JavaExceptionMessage(jenv, swigerror).message());
}
Swig::DirectorException::raise(jenv, swigerror);

}

Note: Beware of using exception specifications as the SWIG director methods will be generated with the same exception specifications and if the director method throws an exception that is
not specified in the exception specifications list it is likely to terminate your program. See the C++ standard for more details. Using the %catches feature instead to define the handled
exceptions does not suffer this potential fate.

Because the default code generation maps any unhandled Java exceptions to Swig: :DirectorException, any director methods that have exception specifications may cause program
termination as this exception class won't be in the exception specifications list. You can avoid throwing Swig: : DirectorException by changing the default handling for all methods by
adding a director:except feature without any method name. For example, you can just ignore them:

%feature("director:except") %{

27.5 Cross language polymorphism using directors 267

SWIG-4.2 Documentation

jthrowable $error = jenv->ExceptionOccurred();
if ($error) {
Sdirectorthrowshandlers
jenv->ExceptionClear();
return $null; // exception is ignored
}
%}

Alternatively an exception compatible with the existing director method exception specifications can be thrown. Assuming that all methods allow std::runtime_error to be thrown, the
return $null line above could be changed to:

throw std::runtime_error(Swig::JavaExceptionMessage(jenv, $error).message());

In more complex situations, a separatedirector:except feature may need to be attached to specific methods by providing a method name to the director:except feature.

This is all no doubt quite hard to follow without seeing a full example and some code. Below is a complete example demonstrating the use of most of the exception customizations one can use,
that is, "directorthrows" and "throws" typemaps, %exception and %catches. See the Exception handling with %exception and %javaexception section for more on converting C++ exceptions to
Java exceptions. The example also has a user defined C++ exception class called MyNs: :MyException and this is wrapped as a Java exception. The director class being wrapped is
MyClass and the director method is called MyClass: :dirmethod. A number of std: : cout calls have been added to help understand code flow. You can copy the code below into an
interface file and run SWIG on it and examine the generated code.

gmodule(directors="1") example

%{
#include <stdexcept>
#include <iostream>
%}

// Generic catch handler for all wrapped methods
%exception %{
try {
$action
catch (const std::exception &e) {
std::cout << "Generic std::exception catch handler" << std::endl;
jclass clazz = jenv->FindClass("java/lang/RuntimeException");
jenv->ThrowNew(clazz, e.what());
return $null;
}
%}

~

// Expose C++ exception as a Java Exception by changing the Java base class and providing a getMessage()
%typemap (javabase) MyNS::MyException "java.lang.RuntimeException"
%rename (getMessage) MyNS::MyException::whatsup;

%inline %{
namespace MyNS {
class MyException {
std::string msg;
public:
MyException(const char *msg) : msg(msg) {}
const char * whatsup() const { return msg.c_str(); }

%typemap (directorthrows) MyNS::MyException %{
if (Swig::ExceptionMatches(jenv, S$error, "$packagepath/MyException")) {
std::cout << "$1_type exception matched (directorthrows typemap)" << std::endl;
throw $1_type(Swig::JavaExceptionMessage(jenv, $error).message());
}
%}

%typemap (throws) MyNS::MyException %{

std::cout << "$1_type caught (throws typemap)" << std::endl;

jclass excep = jenv->FindClass("MyException");

if (excep) {
std::cout << "$1_type class found (throws typemap)" << std::endl;
jenv->ThrowNew (excep, $1l.whatsup());

}

return $null;

%}

// These are the exceptions that the director method MyClass::dirmethod will have catch handlers for.
// Note that this is also a virtual method / director method and the C++ exceptions listed can be

// thrown after converting them from Java exceptions.

%catches (MyNS: :MyException, Swig::DirectorException) MyClass::dirmethod;

// These are the exceptions that call_dirmethod C++ wrapper will have catch handlers for.
// Note that this is not a virtual method, hence not a director method.
%$catches (MyNS: :MyException, Swig::DirectorException) call_dirmethod;

%feature("director") MyClass;

%feature("director:except") MyClass::dirmethod(int x) {
jthrowable $error = jenv->ExceptionOccurred();
if ($error) {
std::cout << "Upcall finished, an exception was thrown in Java" << std::endl;
Sdirectorthrowshandlers
std::cout << "Upcall finished, no exception conversion, throwing DirectorException" << std::endl;
Swig::DirectorException::raise(jenv, $error);

}

%inline %{

class MyClass {

public:
/** Throws either a std::out_of_range or MyException on error */
virtual void dirmethod(int x) {

27.5 Cross language polymorphism using directors

SWIG-4.2 Documentation

if (x <= 0)

throw std::out_of_range("MyClass::dirmethod index is out of range");
else if (x 1)

throw MyNS::MyException("MyClass::dirmethod some problem!");

}
virtual ~MyClass() {}
static void call dirmethod(MyClass& c, int x) {
return c.dirmethod(x);
}
Yi
%}

The generated code for the call_dirmethod wrapper contains the various exception handlers. The outer exception handler is from the $exception directive and the others are from the
"throws" typemaps.

SWIGEXPORT void JNICALL Java_exampleJNI_MyClass_lcall ldirmethod(JNIEnv *jenv, jclass jcls, jlong jargl, jobject jargl_, jint jarg2)
try {
try {
MyClass::call_dirmethod(*argl,arg2);
catch(MyNS: :MyException & e) {
std::cout << "MyNS::MyException caught (throws typemap)" << std::endl;
jclass excep = jenv->FindClass("MyException");
if (excep) {
std::cout << "MyNS::MyException class found (throws typemap)" << std::endl;
jenv->ThrowNew (excep, (&_e)->whatsup());

-~

}

return ;

} catch(Swig::DirectorException &_e) {
(&_e)->throwException(jenv);

return ;
}
} catch (const std::exception &e) {
std::cout << "Generic std::exception catch handler" << std::endl;
jclass clazz = jenv->FindClass("java/lang/RuntimeException");
jenv->ThrowNew(clazz, e.what());
return ;
}

The director method calling up to Java contains the exception handling code from the "directorthrows" typemaps and director:except feature.

void SwigDirector MyClass::dirmethod(int x) {
... [call up to Java using CallStaticVoidMethod]
jthrowable swigerror = jenv->ExceptionOccurred();
if (swigerror) {
std::cout << "Upcall finished, an exception was thrown in Java" << std::endl;

if (Swig::ExceptionMatches(jenv, swigerror, "MyException")) {
std::cout << "MyNS::MyException exception matched (directorthrows typemap)" << std::endl;
throw MyNS::MyException(Swig::JavaExceptionMessage(jenv, swigerror).message());

}

std::cout << "Upcall finished, no exception conversion, throwing DirectorException" << std::endl;
Swig::DirectorException::raise(jenv, swigerror);

Let's use the following Java class to override the director method.

class DerivedClass extends MyClass {

@override
public void dirmethod(int x) {
if (x < 0)
throw new IndexOutOfBoundsException("Index is negative");
else if (x == 0)

throw new MyException("MyException: bad dirmethod");
}
}
public class runme {
public static void main(String argv[]) {
System.loadLibrary("example");
... code snippets shown below ...

Consider the output using the Java code in the four slightly different scenarios below.

1. Non-director C++ class is used, thus, no upcall to a Java director method is made. A std: :out_of_range exception is thrown, which is derived from std: :exception, and hence caught
by the generic exception handler in the call_dirmethod wrapper. The Java code snippet and resulting output is:

MyClass.call_dirmethod(new MyClass(), 0);

Generic std::exception catch handler

Exception in thread "main" java.lang.RuntimeException: MyClass::dirmethod index is out of range
at exampleJNI.MyClass_call_ dirmethod(Native Method)
at MyClass.call dirmethod(MyClass.java:57)
at runme.main(runme.java:14)

2. Non-director C++ class again but this time the MyNS: : MyException class is thrown and caught:

MyClass.call dirmethod(new MyClass(), 1);

27.5 Cross language polymorphism using directors

SWIG-4.2 Documentation

yException caught (throws typemap)

yException class found (throws typemap)

Exception in thread "main" MyException: MyClass::dirmethod some problem!
at exampleJNI.MyClass_call dirmethod(Native Method)

at MyClass.call dirmethod(MyClass.java:57)

at runme.main(runme.java:15)

3. The DerivedClass director class is used so the upcall to Java occurs, but it throws a Java MyException, which gets converted into a C++ MyNS: : MyException, then caught and
converted back into a Java MyException:

MyClass.call dirmethod(new DerivedClass(), 0);

Upcall finished, an exception was thrown in Java
MyNS: :MyException exception matched (directorthrows typemap)
yException caught (throws typemap)
yException class found (throws typemap)
Exception in thread "main" MyException: MyException: bad dirmethod
at exampleJNI.MyClass_call dirmethod(Native Method)
at MyClass.call dirmethod(MyClass.java:57)
at runme.main(runme.java:16)

4. The director class is used again, but this time the director method throws a Java IndexOutOfBoundsException exception which is converted into a C++ Swig: :DirectorException,
thrown and caught again. This time the original Java exception is extracted from the Swig: :DirectorException and rethrown. Note that this approach keeps the stack trace information of
the original exception, so it has the exact location of where the IndexOutOfBoundsException exception was thrown. This is arguably an improvement over the approach above that
converts from a Java excepton to C++ exception and then back to a new Java exception, losing the location of the original exception.

MyClass.call dirmethod(new DerivedClass(), -1);

Upcall finished, an exception was thrown in Java
Upcall finished, no exception conversion, throwing DirectorException
Exception in thread "main" java.lang.IndexOutOfBoundsException: Index is negative
at DerivedClass.dirmethod(runme.java:5)
at exampleJNI.SwigDirector MyClass_dirmethod(exampleJNI.java:23)
at exampleJNI.MyClass_call dirmethod(Native Method)
at MyClass.call dirmethod(MyClass.java:57)
at runme.main(runme.java:17)

27.6 Accessing protected members

When using directors, the protected virtual methods are also wrapped. These methods are wrapped with a protected Java proxy method, so the only way that Java code can access these is
from within a Java class derived from the director class.

Members which are protected and non-virtual can also be accessed when using the "allprotected' mode. The allprotected mode requires directors and is turned on by setting the
allprotected option in addition to the directors option in the %module directive, like this:

gmodule(directors="1", allprotected="1") modulename

Protected member variables and methods (both static and non-static) will then be wrapped with protected access in the Java proxy class.

Note: Neither the directors option nor the allprotected mode support types defined with protected scope. This includes any enums or typedefs declared in the protected section of the C++
class.

The following simple example is a class with numerous protected members, including the constructor and destructor:

gmodule(directors="1", allprotected="1") example
%feature("director") ProtectedBase;

// Ignore use of unsupported types (those defined in the protected section)
%ignore ProtectedBase::typedefs;

%inline %{

class ProtectedBase {
protected:
ProtectedBase() {}
virtual ~ProtectedBase() {}
virtual void virtualMethod() const {}
void nonStaticMethod(double d) const {}
static void staticMethod(int i) {}
int instanceMemberVariable;
static int staticMemberVariable;

// unsupported: types defined with protected access and the methods/variables which use them
typedef int IntegerType;
IntegerType typedefs(IntegerType it) { return it; }

}i

int ProtectedBase::staticMemberVariable = 10;

%}

Note that the IntegerType has protected scope and the members which use this type must be ignored as they cannot be wrapped.

The proxy methods are protected, so the only way the protected members can be accessed is within a class that derives from the director class, such as the following:

class MyProtectedBase extends ProtectedBase

{
public MyProtectedBase() {

}

27.6 Accessing protected members

SWIG-4.2 Documentation

public void accessProtected() {
virtualMethod();
nonStaticMethod(1.2);
staticMethod(99);

setInstanceMemberVariable(5);
int i = getInstanceMemberVariable();

setStaticMemberVariable(10);
i = getStaticMemberVariable();

27.7 Common customization features

An earlier section presented the absolute basics of C/C++ wrapping. If you do nothing but feed SWIG a header file, you will get an interface that mimics the behavior described. However,
sometimes this isn't enough to produce a nice module. Certain types of functionality might be missing or the interface to certain functions might be awkward. This section describes some

common SWIG features that are used to improve the interface to existing C/C++ code.
27.7.1 C/C++ helper functions

Sometimes when you create a module, it is missing certain bits of functionality. For example, if you had a function like this

typedef struct Image {...};
void set_transform(Image *im, double m[4][4]);

it would be accessible from Java, but there may be no easy way to call it. The problem here is that a type wrapper class is generated for the two dimensional array parameter so there is no

easy way to construct and manipulate a suitable double [4][4] value. To fix this, you can write some extra C helper functions. Just use the $inline directive. For example:

%inline %{
/* Note: double[4][4] is equivalent to a pointer to an array double (*)[4] */
double (*new_matd4())[4] {
return (double (*)[4]) malloc(l6*sizeof(double));
}
void free mat44(double (*x)[4]) {
free(x);
}
void matd4_set(double x[4][4], int i, int j, double v) {
x[11[3]1 = v;
}
double mat44_get(double x[4][4], int i, int j) {
return x[i]1[]];
}
%}

From Java, you could then write code like this:

Image im = new Image();

SWIGTYPE p a 4 double a = example.new matd4();
example.mat44_set(a, 0, 0, 1.0);
example.mat44_set(a, 1, 1, 1.0);
example.mat44_set(a, 2, 2, 1.0);
example.set_transform(im, a);

example.free matd4(a);

Admittedly, this is not the most elegant looking approach. However, it works and it wasn't too hard to implement. It is possible to improve on this using Java code, typemaps, and other

customization features as covered in later sections, but sometimes helper functions are a quick and easy solution to difficult cases.
27.7.2 Class extension with %extend

One of the more interesting features of SWIG is that it can extend structures and classes with new methods or constructors. Here is a simple example:

%module example
%4
#include "someheader.h"

%}

struct Vector {
double x, y, z;
Yi

%extend Vector {

char *toString() {
static char tmp[1024];
sprintf(tmp, "Vector(%g, %g, 3%g)", $self->x, $self->y, $self->z);
return tmp;

}

Vector (double x, double y, double z) {
Vector *v = (Vector *) malloc(sizeof(Vector));
V->X = X;

v->y = yi
v->z = z;
return v;
}
}i
Now, in Java

Vector v = new Vector(2, 3, 4);
System.out.println(v);

27.7 Common customization features

271

SWIG-4.2 Documentation

will display

Vector(2, 3, 4)

gextend works with both C and C++ code. It does not modify the underlying object in any way---the extensions only show up in the Java interface.

27.7.3 Class extension with %proxycode

The previous section described how to extend a wrapped class with C or C++ code. This section describes how to extend a wrapped class with Java code instead of C/C++ code. The
gproxycode directive is used and is just a macro for $insert ("proxycode"). The Code insertion block section describes the $insert directive. The section of code for insertion is

"proxycode", that is, the Java proxy class. This directive must hence only be used within the scope of a class, otherwise it is silently ignored. There are two common ways to get the scope
correct.

The first is to use $proxycode inside a class that SWIG parses, for example a tostring() method can be added to a C++ class using pure Java code. A C++ header file can mix C++ and
Java code inside the C++ class as follows:

// flag.h header file
class Flag {
bool flag;
public:
Flag(bool flag) : flag(flag) {}
bool FetchFlag() { return flag; }
#if defined(SWIG)
%proxycode %{
public String toString() {
boolean flag = FetchFlag();
return Boolean.toString(flag);
}
%}
#endif
}i

and wrapped using:

3{
#include "flag.h"
%}
%include "flag.h"

The second is to use $proxycode within $extend as everything within a $extend block is effectively within the scope of the class, for example:

// flag.h header file
class Flag {
bool flag;
public:
Flag(bool flag) : flag(flag) {}
bool FetchFlag() { return flag; }
Yi

and wrapped using:

3{
#include "flag.h"
%}
%include "flag.h"

%extend Flag {

#if defined(SWIG)

%proxycode %{

public String toString() {
boolean flag = FetchFlag();
return Boolean.toString(flag);

}

%}

#endif

}

There is some very limited support of typemaps within a $proxycode block. A useful trick is to obtain the Java type for a given C/C++ type using the $typemap special macro. The following
C++ template demonstrates this:

%inline %{
template<typename T> struct Value {
T value;
Value(const T& val) : value(val) {}
}i
%}

%extend Value {
%proxycode %{
public String toString() {
// Note template type expansion is supported, so T is expanded to 'unsigned int' in this example
// and $typemap(jstype, unsigned int) in turn is expanded to 'long’
$typemap(jstype, T) val = getValue();
return "$javaclassname value: " + val + " Java type: $typemap(jstype, T) JINI type: $typemap(jni, T)";
}
%}

%template(ValueUnsignedInt) Value<unsigned int>;

The generated Java contains the expanded special variable and macro resulting in Java proxy code:

27.7 Common customization features

SWIG-4.2 Documentation

public class ValueUnsignedInt {
public String toString() {
long val = getValue();
return "ValueUnsignedInt value: " + val + " Java type: long JNI type: jlong";
}

27.7.4 Exception handling with %exception and %javaexception

If a C or C++ function throws an error, you may want to convert that error into a Java exception. To do this, you can use the $exception directive. The $exception directive simply lets you
rewrite part of the generated wrapper code to include an error check. It is detailed in full in the Exception handling with %exception section.

In C, a function often indicates an error by returning a status code (a negative number or a NULL pointer perhaps). Here is a simple example of how you might handle that:

%exception malloc {
$action
if (!result) {
jclass clazz = (*jenv)->FindClass(jenv, "java/lang/OutOfMemoryError");
(*jenv)->ThrowNew(jenv, clazz, "Not enough memory");
return $null;
}
}

void *malloc(size_t nbytes);

In Java,

SWIGTYPE_p_void a = example.malloc(2000000000);

will produce a familiar looking Java exception:

Exception in thread "main" java.lang.OutOfMemoryError: Not enough memory
at exampleJNI.malloc(Native Method)
at example.malloc(example.java:16)
at runme.main(runme.java:112)

If a library provides some kind of general error handling framework, you can also use that. For example:

%exception malloc {

s$action
if (err_occurred()) {
jclass clazz = (*jenv)->FindClass(jenv, "java/lang/OutOfMemoryError");

(*jenv)->ThrowNew(jenv, clazz, "Not enough memory");
return $null;
}
}

void *malloc(size_t nbytes);

If no declaration name is given to $exception, it is applied to all wrapper functions. The $action is a SWIG special variable and is replaced by the C/C++ function call being wrapped. The
return $null; handles all native method return types, namely those that have a void return and those that do not. This is useful for typemaps that will be used in native method returning all
return types. See the section on Java special variables for further explanation.

C++ exceptions are also easy to handle. We can catch the C++ exception and rethrow it as a Java exception like this:

%exception getitem {
try {
$action
} catch (std::out_of_range &e) {
jclass clazz = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(clazz, "Range error");
return $null;

}

class FooClass {
public:
FooClass *getitem(int index); // Might throw std::out_of_ range exception

In the example above, java.lang.Exception is a checked exception class and so ought to be declared in the throws clause of getitem. Classes can be specified for adding to the throws
clause using % javaexception(classes) instead of exception, where classes is a string containing one or more comma separated Java classes. The $clearjavaexception
feature is the equivalent to $clearexception and clears previously declared exception handlers. The $nojavaexception feature is the equivalent to $noexception and disables the
exception handler. See Clearing features for the difference on disabling and clearing features.

%javaexception("java.lang.Exception") getitem {
try {
saction
} catch (std::out_of_range &e) {
jclass clazz = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(clazz, "Range error");
return $null;

}

class FooClass {
public:
FooClass *getitem(int index); // Might throw std::out_of_ range exception

27.7 Common customization features

SWIG-4.2 Documentation

Yi

The generated proxy method now generates a throws clause containing java.lang.Exception:

public class FooClass {

public FooClass getitem(int index) throws java.lang.Exception { ... }

The examples above first use the C JNI calling syntax then the C++ JNI calling syntax. The C++ calling syntax will not compile as C and also vice versa. It is however possible to write JNI calls
which will compile under both C and C++ and is covered in the Typemaps for both C and C++ compilation section.

The language-independent exception. i library file can also be used to raise exceptions. See the SWIG Library chapter. The typemap example Handling C++ exception specifications as
Java exceptions provides further exception handling capabilities.

27.7.5 Method access with %javamethodmodifiers

A Java feature called ¢ javamethodmodifiers can be used to change the method modifiers from the default public. It applies to both module class methods and proxy class methods. For
example:

%$javamethodmodifiers protect me() "protected";
void protect _me();

Will produce the method in the module class with protected access.

protected static void protect _me() {
exampleJNI.protect_me();

}

27.7.6 Java begin

It is possible to add a common comment at the start of every generated Java file. The $module directive supports the javabegin option for this. The provided text is generated at the very
beginning of each generated .java file. As it is generated before the package statement, is only really useful for adding in a common comment into all generated .java files. For example,
copyright text for each file:

gmodule(javabegin="/* Common comment. Copyright (C) 2000 Mr Nobody. */\n") nobodymodule

27.8 Tips and techniques

Although SWIG is largely automatic, there are certain types of wrapping problems that require additional user input. Examples include dealing with output parameters, strings and arrays. This
chapter discusses the common techniques for solving these problems.

27.8.1 Input and output parameters using primitive pointers and references

A common problem in some C programs is handling parameters passed as simple pointers or references. For example:

void add(int x, int y, int *result) {
*result = x + y;

}

or perhaps

int sub(int *x, int *y) {
return *x-*y;

}

The typemaps. i library file will help in these situations. For example:

%module example
%include "typemaps.i"

void add(int, int, int *OUTPUT);
int sub(int *INPUT, int *INPUT);

In Java, this allows you to pass simple values. For example:

int result = example.sub(7, 4);
System.out.println("7 - 4 = " + result);
int[] sum = {0};

example.add(3, 4, sum);
System.out.println("3 + 4 = " + sum[0]);

Which will display:

w =
+ 1
-

Notice how the INPUT parameters allow integer values to be passed instead of pointers and how the OUTPUT parameter will return the result in the first element of the integer array.

If you don't want to use the names INPUT or OUTPUT , use the $apply directive. For example:

gmodule example

27.8 Tips and techniques

SWIG-4.2 Documentation

%include "typemaps.i"

%apply int *OUTPUT { int *result };
%apply int *INPUT { int *x, int *y};

void add(int x, int y, int *result);
int sub(int *x, int *y);

If a function mutates one of its parameters like this,

void negate(int *x) {
*X o= —(*x);

}

you can use INOUT like this:

%include "typemaps.i"

void negate(int *INOUT);

In Java, the input parameter is the first element in a 1 element array and is replaced by the output of the function. For example:

int[] neg = {3};
example.negate(neg);
System.out.println("Negative of 3 = " + neg[0]);

And

no prizes for guessing the output:

Negative of 3 = -3

These typemaps can also be applied to C++ references. The above examples would work the same if they had been defined using references instead of pointers. For example, the Java code

to use the negate function would be the same if it were defined either as it is above:

void negate(int *INOUT);

or using a reference:

void negate(int &INOUT);

Note: Since most Java primitive types are immutable and are passed by value, it is not possible to perform in-place modification of a type passed as a parameter.

Be aware that the primary purpose of the typemaps. i file is to support primitive datatypes. Writing a function like this

void foo(Bar *OUTPUT);

will not have the intended effect since typemaps . i does not define an OUTPUT rule for Bar.

27.8.2 Simple pointers

If you must work with simple pointers such as int * ordouble * another approach to usingtypemaps. i is to use the cpointer. i pointer library file. For example:

The

%module example
%include "cpointer.i"

%inline %{
extern void add(int x, int y, int *result);

%}

$pointer functions(int, intp);

$pointer_functions(type, name) macro generates five helper functions that can be used to create, destroy, copy, assign, and dereference a pointer. In this case, the functions

as follows:

int “*new_intp();

int *copy_intp(int *x);

void delete_intp(int *x);

void intp_assign(int *x, int value);
int intp_value(int *x);

In Java, you would use the functions like this:

SWIGTYPE_p_int intPtr = example.new_intp();
example.add(3, 4, intPtr);

int result = example.intp value(intPtr);
System.out.println("3 + 4 = " + result);

If you replace $pointer_functions(int, intp) by %pointer class(int, intp), the interface is more class-like.

intp intPtr = new intp();

example.add(3, 4, intPtr.cast());

int result = intPtr.value();
System.out.println("3 + 4 = " + result);

27.8 Tips and techniques

275

SWIG-4.2 Documentation

See the SWIG Library chapter for further details.
27.8.3 Wrapping C arrays with Java arrays

SWIG can wrap arrays in a more natural Java manner than the default by using the arrays_java. i library file. Let's consider an example:

%$include "arrays_java.i";
int array[4];
void populate(int x[]) {
int i;
for (i=0; i<4; i++)
x[i] = 100 + i;

These one dimensional arrays can then be used as if they were Java arrays:

int[] array = new int[4];
example.populate(array);

System.out.print("array: ");

for (int i=0; i<array.length; i++)
System.out.print(array[i] + " ");

example.setArray(array);

int[] global_array = example.getArray();

System.out.print("\nglobal array: ");

for (int i=0; i<array.length; i++)
System.out.print(global_array[i] + " ");

Java arrays are always passed by reference, so any changes a function makes to the array will be seen by the calling function. Here is the output after running this code:

array: 100 101 102 103
global_ array: 100 101 102 103

Note that for assigning array variables the length of the C variable is used, so it is possible to use a Java array that is bigger than the C code will cope with. Only the number of elements in the
C array will be used. However, if the Java array is not large enough then you are likely to get a segmentation fault or access violation, just like you would in C. When arrays are used in
functions like populate, the size of the C array passed to the function is determined by the size of the Java array.

Please be aware that the typemaps in this library are not efficient as all the elements are copied from the Java array to a C array whenever the array is passed to and from JNI code. There is
an alternative approach using the SWIG array library and this is covered in the next section.

27.8.4 Unbounded C Arrays

Sometimes a C function expects an array to be passed as a pointer. For example,

int sumitems(int *first, int nitems) {
int i, sum = 0;
for (i = 0; i < nitems; i++) {
sum += first[i];
}
return sum;

}

One of the ways to wrap this is to apply the Java array typemaps that come in the arrays_java. i library file:

%$include "arrays_java.i"
%apply int[] {int *};

The ANY size will ensure the typemap is applied to arrays of all sizes. You could narrow the typemap matching rules by specifying a particular array size. Now you can use a pure Java array
and pass it to the C code:

int[] array = new int[10000000]; // Array of 10-million integers
for (int i=0; i<array.length; i++) { // Set some values
array[i] = i;
}
int sum = example.sumitems(array, 10000);
System.out.println("Sum = " + sum);

and the sum would be displayed:

Sum = 49995000

This approach is probably the most natural way to use arrays. However, it suffers from performance problems when using large arrays as a lot of copying of the elements occurs in transferring
the array from the Java world to the C++ world. An alternative approach to using Java arrays for C arrays is to use an alternative SWIG library file carrays. i. This approach can be more
efficient for large arrays as the array is accessed one element at a time. For example:

%include "carrays.i"
sarray_functions(int, intArray);

The sarray_functions(type, name) macro generates four helper functions that can be used to create and destroy arrays and operate on elements. In this case, the functions are as
follows:

int *new_intArray(size_t nelements);
void delete_intArray(int *x);
int intArray_getitem(int *x, size t index);

27.8 Tips and techniques

SWIG-4.2 Documentation

void intArray setitem(int *x, size_t index, int value);

In Java, you would use the functions like this:

SWIGTYPE_p_int array = example.new_intArray(10000000); // Array of 10-million integers
for (int i=0; i<10000; i++) { // Set some values
example.intArray setitem(array, i, i);

}
int sum = example.sumitems(array, 10000);
System.out.println("Sum = " + sum);

If you replace $array_functions(int, intp) by %array_class(int, intp), the interface is more class-like and a couple more helper functions are available for casting between the
array and the type wrapper class.

%include "carrays.i"
sarray_class(int, intArray);

The sarray_class(type, name) macro creates wrappers for an unbounded array object that can be passed around as a simple pointer like int * ordouble *. For instance, you will be
able to do this in Java:

intArray array = new intArray(10000000); // Array of 10-million integers
for (int i=0; i<10000; i++) { // Set some values
array.setitem(i, i);

}
int sum = example.sumitems(array.cast(), 10000);
System.out.println("Sum = " + sum);

The array "object" created by $array_class () does not encapsulate pointers inside a special array object. In fact, there is no bounds checking or safety of any kind (just like in C). Because
of this, the arrays created by this library are extremely low-level indeed. You can't iterate over them nor can you even query their length. In fact, any valid memory address can be accessed if
you want (negative indices, indices beyond the end of the array, etc.). Needless to say, this approach is not going to suit all applications. On the other hand, this low-level approach is
extremely efficient and well suited for applications in which you need to create buffers, package binary data, etc.

27.8.5 Binary data vs Strings

By default SWIG handles char * as a string but there is a handy multi-argument typemap available as mentioned in Passing binary data. The following simple example demonstrates using a
byte array instead of passing the default string type and length to the wrapped function.

%apply (char *STRING, size_t LENGTH) { (const char data[], size_t len) }
%inline %{
void binaryCharl(const char data[], size t len) {

printf("len: %d data: ", len);

for (size_t i=0; i<len; ++i)

printf("$x ", data[i]);

printf("\n");
}
%}

Calling from Java requires just the byte array to be passed in as the multi-argument typemap being applied reduces the number of arguments in the target language to one, from the original
two:

byte[] data = "hi\0jk".getBytes();
example.binaryCharl(data);

resulting in the output

$ java runme
len: 5 data: 68 69 0 6a 6b

27.8.6 Overriding new and delete to allocate from Java heap

Unlike some languages supported by SWIG, Java has a true garbage collection subsystem. Other languages will free SWIG wrapped objects when their reference count reaches zero. Java
only schedules these objects for finalization, which may not occur for some time. Because SWIG objects are allocated on the C heap, Java users may find the JVM memory use quickly
exceeds the assigned limits, as memory fills with unfinalized proxy objects. Forcing garbage collection is clearly an undesirable solution.

An elegant fix for C++ users is to override new and delete using the following code (here shown included in a SWIG interface file)

/* File: java_heap.i */
gmodule test

3{

#include <stdexcept>
#include "jni.h"

J%%
* A stash area embedded in each allocation to hold java handles
*/

struct Jalloc {

jbyteArray jba;
jobject ref;

Yi

static JavaVM *cached_jvm = 0;

JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM *jvm, void *reserved) {
cached_jvm = jvm;
return JNI_VERSION 1 2;

}

static JNIEnv * JNU GetEnv() {
JNIEnv *env;
jint rc = cached jvm->GetEnv((void **)&env, JNI_VERSION_1_2);

27.8 Tips and techniques

SWIG-4.2 Documentation

if (rc == JNI_EDETACHED)
throw std::runtime_error("current thread not attached");
if (rc == JNI_EVERSION)

throw std::runtime error("jni version not supported");
return env;

}

void * operator new(size t t) {
if (cached_jvm != 0)
JNIEnv *env = JNU_GetEnv();
jbyteArray jba = env->NewByteArray((int) t + sizeof(Jalloc));
if (env->ExceptionOccurred())
throw bad_alloc();
void *jbuffer = static_cast<void *>(env->GetByteArrayElements(jba, 0));
if (env->ExceptionOccurred())
throw bad_alloc();
Jalloc *pJalloc = static_cast<Jalloc *>(jbuffer);
pJalloc->jba = jba;
/* Assign a global reference so byte array will persist until delete'ed */
pJalloc->ref = env->NewGlobalRef (jba);
if (env->ExceptionOccurred())
throw bad_alloc();
return static_cast<void *>(static_cast<char *>(jbuffer) + sizeof(Jalloc));
}
else { /* JNI_OnLoad not called, use malloc and mark as special */
Jalloc *pJalloc = static_cast<Jalloc *>(malloc((int) t + sizeof(Jalloc)));
if (!pJalloc)
throw bad_alloc();
pJalloc->ref = 0;
return static_cast<void *>(
static_cast<char *>(static_cast<void *>(pJalloc)) + sizeof(Jalloc));

}

void operator delete(void *v) {
if (v 1= 0) {
void *buffer = static_cast<void *>(static_cast<char *>(v) - sizeof(Jalloc));
Jalloc *pJalloc = static_cast<Jalloc *>(buffer);
if (pJalloc->ref) {
JNIEnv *env = JNU_GetEnv();
env->DeleteGlobalRef (pJalloc->ref);
env->ReleaseByteArrayElements(pJalloc->jba, static_cast<jbyte *>(buffer), 0);

}
else {
free(buffer);
}
}
}
%}

This code caches the Java environment during initialization, and when new is called, a Java ByteArray is allocated to provide the SWIG objects with space in the Java heap. This has the
combined effect of re-asserting the Java virtual machine's limit on memory allocation, and puts additional pressure on the garbage collection system to run more frequently. This code is made
slightly more complicated because allowances must be made if new is called before the JNI_OnLoad is executed. This can happen during static class initialization, for example.

Unfortunately, because most Java implementations call malloc and free, this solution will not work for C wrapped structures. However, you are free to make functions that allocate and free
memory from the Java heap using this model and use these functions in place of malloc and free in your own code.

27.9 Java typemaps

This section describes how you can modify SWIG's default wrapping behavior for various C/C++ datatypes using the $typemap directive. You are advised to be familiar with the material in the
" Typemaps" chapter. While not absolutely essential knowledge, this section assumes some familiarity with the Java Native Interface (JNI). JNI documentation can be consulted either online at
the Java web site or from a good JNI book. The following two books are recommended:

« Title: 'Essential JNI: Java Native Interface.' Author: Rob Gordon. Publisher: Prentice Hall. ISBN: 0-13-679895-0.
« Title: 'The Java Native Interface: Programmer's Guide and Specification.' Author: Sheng Liang. Publisher: Addison-Wesley. ISBN: 0-201-32577-2. Also available online at the Sun
Developer Network.

Before proceeding, it should be stressed that typemaps are not a required part of using SWIG---the default wrapping behavior is enough in most cases. Typemaps are only used if you want to
change some aspect of the generated code.

27.9.1 Default primitive type mappings

The following table lists the default type mapping from Java to C/C++.

C/C++ type Java type [INItype
ggglst bool & boolean jboolean
g;ﬁ;t char & char lichar
z::?ﬁsidsii;aerd char & byte jbyte
ggrignuidsizitd char & short ishort
Egzgt short & short ishort
bons: unsgned short & |™ int
I:c}nst int & int jint
boney unsigned ints |9 jong
fonr?st long & int jint
bons: unsigned long & |©™9 jong

27.9 Java typemaps

https://www.oracle.com/technetwork/java/index.html
http://java.sun.com/docs/books/jni

SWIG-4.2 Documentation

long long -
const long long & long llong
unsigned long long

const unsigned long long ||java.math.BigInteger||jobject
float i

const float & float ifloat
double i

const double & double lidouble
size_t i

const size_t & long ilong
char * - —
char] String istring

Note that default mappings for the C long type is more suitable for 32-bit systems. If long is 64-bit, the full range can be obtained by defining SWIGWORDSIZE64 when invoking SWIG. The long
type will instead be mapped as follows:

C/C++ type Java type [onTtype
long I
const long & long jlong

unsigned long
const unsigned long [java.math.Biglntegerjobject
&

Note that when size_t is 64-bit in C, the full unsigned range is not available. This can be fixed by applying the 64-bit unsigned long long typemaps as follows:

%$apply unsigned long long { size_t };
%apply const unsigned long long & { const size_t & };

The net effect then changes from the default shown earlier to:

C/C++ type ||Java type JNI type
size_t
const size_t &

java.math.BigInteger||jobject

Note that SWIG wraps the C char type as a character. Pointers and arrays of this type are wrapped as strings. The signed char type can be used if you want to treatchar as a signed
number rather than a character. Also note that all const references to primitive types are treated as if they are passed by value.

Given the following C function:

void func(unsigned short a, char *b, const long &c, unsigned long long d);

The module class method would be:

public static void func(int a, String b, int ¢, java.math.BigInteger d) {...}

Th

]

intermediary JNI class would use the same types:

public final static native void func(int jargl, String jarg2, int jarg3,
java.math.BigInteger jarg4);

and the JNI function would look like this:

SWIGEXPORT void JNICALL Java_exampleJNI_func(JNIEnv *jenv, jclass jcls,
jint jargl, jstring jarg2, jint jarg3, jobject jarg4) {...}

The mappings for C int and C long are appropriate for 32 bit applications which are used in the 32 bit JVMs. There is no perfect mapping between Java and C as Java doesn't support all the
unsigned C data types. However, the mappings allow the full range of values for each C type from Java.

27.9.2 Default typemaps for non-primitive types
The previous section covered the primitive type mappings. Non-primitive types such as classes and structs are mapped using pointers on the C/C++ side and storing the pointer into a Java
long variable which is held by the proxy class or type wrapper class. This applies whether the type is marshalled as a pointer, by reference or by value. It also applies for any

unknown/incomplete types which use type wrapper classes.

So in summary, the C/C++ pointer to non-primitive types is cast into the 64 bit Java 1ong type and therefore the JNI type is ajlong. The Java type is either the proxy class or type wrapper
class.

27.9.3 Sixty four bit JVMs
If you are using a 64 bit JVM you may have to override the C long, but probably not C int default mappings. Mappings will be system dependent, for example long will need remapping on Unix
LP64 systems (long, pointer 64 bits, int 32 bits), but not on Microsoft 64 bit Windows which will be using a P64 IL32 (pointer 64 bits and int, long 32 bits) model. This may be automated in a
future version of SWIG. Note that the Java write once run anywhere philosophy holds true for all pure Java code when moving to a 64 bit JVM. Unfortunately it won't of course hold true for JNI
code.

27.9.4 What is a typemap?

A typemap is nothing more than a code generation rule that is attached to a specific C datatype. For example, to convert integers from Java to C, you might define a typemap like this:

gmodule example

%typemap(in) int {

$1 = S$input;

printf("Received an integer : %d\n", $1);
}
%inline %{
extern int fact(int nonnegative);
%}

27.9 Java typemaps

279

SWIG-4.2 Documentation

Typemaps are always associated with some specific aspect of code generation. In this case, the "in" method refers to the conversion of input arguments to C/C++. The datatype int is the
datatype to which the typemap will be applied. The supplied C code is used to convert values. In this code a number of special variables prefaced by a $ are used. The $1 variable is a
placeholder for a local variable of type int. The $input variable contains the Java data, the JNI jint in this case.

When this example is compiled into a Java module, it can be used as follows:

System.out.println(example.fact(6));

and the output will be:

Received an integer : 6
720

In this example, the typemap is applied to all occurrences of the int datatype. You can refine this by supplying an optional parameter name. For example:

gmodule example

%typemap(in) int nonnegative {
$1 = S$input;
printf("Received an integer : %d\n", $1);

}

%inline %{
extern int fact(int nonnegative);
%}

In this case, the typemap code is only attached to arguments that exactly match int nonnegative.

The application of a typemap to specific datatypes and argument names involves more than simple text-matching--typemaps are fully integrated into the SWIG C++ type-system. When you
define a typemap for int, that typemap applies to int and qualified variations such as const int. In addition, the typemap system follows typedef declarations. For example:

%typemap(in) int nonnegative {

$1 = $input;

printf("Received an integer : %d\n", $1);
}
%inline %{
typedef int Integer;
extern int fact(Integer nonnegative); // Rbove typemap is applied
%}

However, the matching of typedef only occurs in one direction. If you defined a typemap for Integer, it is not applied to arguments of type int.

Typemaps can also be defined for groups of consecutive arguments. For example:

%typemap(in) (char *str, int len) {
Yi

int count(char c, char *str, int len);

When a multi-argument typemap is defined, the arguments are always handled as a single Java parameter. This allows the function to be used like this (notice how the length parameter is
omitted):

int ¢ = example.count('e', "Hello World");

27.9.5 Typemaps for mapping C/C++ types to Java types

The typemaps available to the Java module include the common typemaps listed in the main typemaps section. There are a number of additional typemaps which are necessary for using
SWIG with Java. The most important of these implement the mapping of C/C++ types to Java types:

'Typemap Description
jni NI C types. These provide the default mapping of types from C/C++ to JNI for use in the JNI (C/C++) code.

Java intermediary types. These provide the default mapping of types from C/C++ to Java for use in the native functions in the intermediary JNI class. The type must be the

itype equivalent Java type for the JNI C type specified in the "jni" typemap.

jstype Java types. These provide the default mapping of types from C/C++ to Java for use in the Java module class, proxy classes and type wrapper classes.

Conversion from jstype to jtype. These are Java code typemaps which transform the type used in the Java module class, proxy classes and type wrapper classes (as
javain specified in the "jstype" typemap) to the type used in the Java intermediary JNI class (as specified in the "jtype" typemap). In other words the typemap provides the
conversion to the native method call parameter types.

Conversion from jtype to jstype. These are Java code typemaps which transform the type used in the Java intermediary JNI class (as specified in the "jtype" typemap) to the

javaout Java type used in the Java module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap). In other words the typemap provides the conversion
from the native method call return type.

Java boxed type. These are Java code typemaps to provide the Java boxed type, such as, Integer for C type int. As autoboxing is only relevant to the Java primitive types,
iboxtype these are only provided for the C types that map to Java primitive types. This typemap is usually only used by C++ STL container wrappers that are wrapped by Java generic
types as the boxed type must be used instead of the unboxed/primitive type when declaring a Java generic type.

Conversion from jtype to jstype for director methods. These are Java code typemaps which transform the type used in the Java intermediary JNI class (as specified in the

javadirectorin ||"jtype" typemap) to the Java type used in the Java module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap). This typemap provides the
conversion for the parameters in the director methods when calling up from C++ to Java. See Director typemaps.

Conversion from jstype to jtype for director methods. These are Java code typemaps which transform the type used in the Java module class, proxy classes and type wrapper
javadirectorout||classes (as specified in the "jstype" typemap) to the type used in the Java intermediary JNI class (as specified in the "jtype" typemap). This typemap provides the conversion
for the return type in the director methods when returning from the C++ to Java upcall. See Director typemaps.

Conversion from C++ type to jni type for director methods. These are C++ typemaps which convert the parameters used in the C++ director method to the appropriate JNI
intermediary type. The conversion is done in JNI code prior to calling the Java function from the JNI code. See Director typemaps.

directorin

Conversion from jni type to C++ type for director methods. These are C++ typemaps which convert the JNI return type used in the C++ director method to the appropriate C++

directorout return type. The conversion is done in JNI code after calling the Java function from the JNI code. See Director typemaps.

If you are writing your own typemaps to handle a particular type, you will normally have to write a collection of them. The default typemaps are in "java.swg" and so might be a good place for

27.9 Java typemaps

SWIG-4.2 Documentation

finding typemaps to base any new ones on.

The "jni", "jtype" and "jstype" typemaps are usually defined together to handle the Java to C/C++ type mapping. An "in" typemap should be accompanied by a "javain" typemap and likewise an
"out" typemap by a "javaout" typemap. If an "in" typemap is written, a "freearg" and "argout" typemap may also need to be written as some types have a default "freearg" and/or "argout”
typemap which may need overriding. The "freearg” typemap sometimes releases memory allocated by the "in" typemap. The "argout" typemap sometimes sets values in function parameters
which are passed by reference in Java.

Note that the "in" typemap marshals the JNI type held in the "jni" typemap to the real C/C++ type and for the opposite direction, the "out" typemap marshals the real C/C++ type to the JNI type

held in the "jni" typemap. For non-primitive types the "in" and "out" typemaps are responsible for casting between the C/C++ pointer and the 64 bit jlong type. There is no portable way to cast
a pointer into a 64 bit integer type and the approach taken by SWIG is mostly portable, but breaks C/C++ aliasing rules. In summary, these rules state that a pointer to any type must never be

dereferenced by a pointer to any other incompatible type. The following code snippet might aid in understand aliasing rules better:

short a;
short* pa = 0;
int i = 0x1234;

a =
a =

(short)i; /* okay */
(short)&i; /* breaks aliasing rules */

An email posting, Aliasing. pointer casts and gcc 3.3 elaborates further on the subject. In SWIG, the "in" and "out" typemaps for pointers are typically

%typemap(in) struct Foo * %{

$1 = *(struct Foo **)&$input;
%}
%typemap(out) struct Bar * %{

/* cast jlong into C ptr */

*(struct Bar **)&$result = $1; /* cast C ptr into jlong */
%}
struct Bar {...};
struct Foo {...};

struct Bar * FooBar(struct Foo *f);

resulting in the following code which breaks the aliasing rules:

SWIGEXPORT jlong JNICALL Java_exampleJNI_FooBar(JNIEnv *jenv, jclass jcls,
jlong jargl, jobject jargl_) {
jlong jresult = 0 ;
struct Foo *argl = (struct Foo *) 0 ;
struct Bar *result = 0 ;

(void) jenv;

(void) jcls;

(void)jargl_;

argl = *(struct Foo **)&jargl;
result = (struct Bar *)FooBar(argl);
*(struct Bar **)&jresult = result;
return jresult;

If you are using gcc as your C compiler, you might get a "dereferencing type-punned pointer will break strict-aliasing rules” warning about this. Please see Compiling a dynamic module to avoid
runtime problems with these strict aliasing rules.

The default code generated by SWIG for the Java module comes from the typemaps in the "java.swg" library file which implements the Default primitive type mappings and Default typemaps
for non-primitive types covered earlier. There are other type mapping typemaps in the Java library. These are listed below:

C Type [Typemap [File Kind [Java Type [Function

':;grlgxgezomters and INPUT typemaps.i |input |Java basic types Allows values to be used for C functions taking pointers for data input.

primitive pointers and OUTPUT typemaps.i |Joutput|Java basic type arrays Allows values held within an array to be used for C functions taking pointers for data

references output.

primitive pointers and INOUT typemaps.i input Java basic type arrays Allows values held within an array to be used for C functions taking pointers for data

references output input and output.

string .. |linput . - . .

wstring [unnamed] std_string.i output String Use for std::string mapping to Java String.

arrays of primitive types [unnamed] arrays_java.i input jarrays of primitive Java Use for mapping C arrays to Java arrays.
outputi|types

arrays of JAVA_ARRAYSOFCLASSES . _llinput .

) structs/unions macro arrays_java.i output arrays of proxy classes ||Use for mapping C arrays to Java arrays.

arrays of enums ARRAYSOFENUMS arrays_javai input int] Use for mapping C arrays to Java arrays (typeunsafe and simple enum wrapping
output, approaches only).

char * BYTE various.i input |[byte(] Java byte array is converted to char array

char ** STRING_ARRAY various.i ':I‘;::” String[] Use for mapping NULL terminated arrays of C strings to Java String arrays

unsigned char * NIOBUFFER various.i input java.nio.Buffer Use for mappingAdirectIy allocated buffers to c/c++. useful with directors and long
output lived memory objects

27.9.6 Java typemap attributes
There are a few additional typemap attributes that the Java module supports.

The first of these is the 'throws' attribute. The throws attribute is optional and specified after the typemap name and contains one or more comma separated classes for adding to the throws
clause for any methods that use that typemap. It is analogous to the %javaexception feature's throws attribute.

%typemap (typemapname, throws="ExceptionClassl, ExceptionClass2") type { ... }

The attribute is necessary for supporting Java checked exceptions and can be added to just about any typemap. The list of typemaps include all the C/C++ (JNI) typemaps in the "_Typemaps"

chapter and the Java specific typemaps listed in the previous section, barring the "jni", "jtype" and "jstype" typemaps as they could never contain code to throw an exception.

The throws clause is generated for the proxy method as well as the JNI method in the JNI intermediary class. If a method uses more than one typemap and each of those typemaps have
classes specified in the throws clause, the union of the exception classes is added to the throws clause ensuring there are no duplicate classes. See the NaN exception example for further
usage.

27.9 Java typemaps

281

http://mail-index.netbsd.org/tech-kern/2003/08/11/0001.html

SWIG-4.2 Documentation

The "jtype" typemap has the optional 'nopgcpp’ attribute which can be used to suppress the generation of the premature garbage collection prevention parameter.

The "javain" typemap has the optional 'pre', 'post' and 'pgcppname’ attributes. These are used for generating code before and after the JNI call in the proxy class or module class. The 'pre'
attribute contains code that is generated before the JNI call and the 'post' attribute contains code generated after the JNI call. The 'pgcppname’ attribute is used to change the premature
garbage collection prevention parameter name passed to the JNI function. This is sometimes needed when the 'pre' typemap creates a temporary variable which is then passed to the JNI
function.

Note that when the 'pre’ or 'post' attributes are specified and the associated type is used in a constructor, a constructor helper function is generated. This is necessary as the Java proxy
constructor wrapper makes a call to a support constructor using a this call. In Java the this call must be the first statement in the constructor body. The constructor body thus calls the helper
function and the helper function instead makes the JNI call, ensuring the 'pre' code is called before the JNI call is made. There is a Date marshalling example showing 'pre’, 'post' and
'pgcppname’ attributes in action.

27.9.7 Java special variables

The standard SWIG special variables are available for use within typemaps as described in the Typemaps documentation , for example $1, $input, $result etc.
The Java module uses a few additional special variables:

$javaclassname

This special variable works like the other special variables and $ javaclassname is similar to $1_type. It expands to the class name for use in Java given a pointer. SWIG wraps unions,
structs and classes using pointers and in this case it expands to the Java proxy class name. For example, $ javaclassname is replaced by the proxy classnameFoo when wrapping a Foo *
and $&javaclassname expands to the proxy classname when wrapping the C/C++ type Foo and $* javaclassname expands to the proxy classname when wrappingfFoo *&. If the type
does not have an associated proxy class, it expands to the type wrapper class name, for example, SWIGTYPE p_unsigned_short is generated when wrappingunsigned short *. The
class name is fully qualified with the package name when using the nspace feature.

$javaclazzname

This special variable works like $ javaclassname, but expands the fully qualified C++ class into the package name, if used by the nspace feature, and the proxy class name, mangled for use
as a function name. For example, Namespacel: :Namespace2: :Klass is expanded into Namespacel_Namespace2_Klass_. This special variable is usually used for making calls to a
function in the intermediary JNI class, as they are mangled with this prefix.

$null
Used in input typemaps to return early from JNI functions that have either void or a non-void return type. Example:

%typemap(check) int * %¢{
if (error) {
SWIG_JavaThrowException(jenv, SWIG_JavaIndexOutOfBoundsException, "Array element error");
return $null;
}
%}

If the typemap gets put into a function with void as return, $null will expand to nothing:

SWIGEXPORT void JNICALL Java_jnifn(...) {
if (error) {
SWIG_JavaThrowException(jenv, SWIG_JavaIndexOutOfBoundsException, "Array element error");
return ;

otherwise $null expands to NULL

SWIGEXPORT jobject JNICALL Java_jnifn(...) {
if (error) {
SWIG_JavaThrowException(jenv, SWIG_JavaIndexOutOfBoundsException, "Array element error");
return NULL;
}

$javainput, $jnicall and $owner

The $javainput special variable is used in "javain" typemaps and $jnicall and $owner are used in "javaout" typemaps. $jnicall is analogous to $action in %exception. It is replaced by the call to
the native method in the intermediary JNI class. $owner is replaced by either true if %newobject has been used, otherwise false . $javainput is analogous to the $input special variable. It is
replaced by the parameter name.

Here is an example:

%typemap(javain) Class "Class.getCPtr($javainput)"
%typemap(javain) unsigned short "$javainput"
%typemap(javaout) Class * {

return new Class($jnicall, $owner);

}

%inline %{
class Class {...};
Class * bar(Class cls, unsigned short ush) { return new Class(); };

%}

The generated proxy code is then:

public static Class bar(Class cls, int ush) {
return new Class(exampleJNI.bar(Class.getCPtr(cls), cls, ush), false);

}

Here $javainput has been replaced by c1s and ush. $jnicall has been replaced by the native method call, exampledNI.bar(...) and $owner has been replaced by false. If %newobject is
used by adding the following at the beginning of our example:

%newobject bar(Class cls, unsigned short ush);

The generated code constructs the return type using true indicating the proxy class Class is responsible for destroying the C++ memory allocated for it in bar:

27.9 Java typemaps

282

SWIG-4.2 Documentation

public static Class bar(Class cls, int ush) {
return new Class(exampleJNI.bar(Class.getCPtr(cls), cls, ush), true);

}

$static
This special variable expands to either static or nothing depending on whether the class is an inner Java class or not. It is used in the "javaclassmodifiers" typemap so that global classes can
be wrapped as Java proxy classes and nested C++ classes/enums can be wrapped with the Java equivalent, that is, static inner proxy classes.

$error, $jniinput, $javacall and $packagepath
These special variables are used in the directors typemaps. See Director specific typemaps for details.

$module
This special variable expands to the module name, as specified by $module or the -module commandline option.

$imclassname
This special variable expands to the intermediary class name. Usually this is the same as '$moduleJNI', unless the jniclassname attribute is specified in the %module directive.

$imfuncname
This special variable expands to the name of the function in the intermediary class that will be used in $jnicall. Like, $jnicall, this special variable is only expanded in the "javaout" typemap.

$javainterfacename
This special variable is only expanded when the interface feature is applied to a class. It works much like $javaclassname , but instead of expanding to the proxy classname, it expands
to the value in the name attribute in the interface feature. For example:

%feature("interface", name="MyInterface") MyClass;
%typemap(jstype) MyClass "$&javainterfacename"
%typemap(jstype) MyClass * "$javainterfacename"

will result in the jstype typemap expanding toMyInterface for both MyClass and MyClass *. The interface name is fully qualified with the package name when using the nspace feature.
$interfacename
This special variable is only expanded when the interface feature is applied to a class. It expands to just the interface name and is thus different to $ javainterfacename in that it is not
fully qualified with the package name when using the nspace feature.

27.9.8 Typemaps for both C and C++ compilation

JNI calls must be written differently depending on whether the code is being compiled as C or C++. For example C compilation requires the pointer to a function pointer struct member syntax
like

const jclass clazz = (*jenv)->FindClass(jenv, "java/lang/String");

whereas C++ code compilation of the same function call is a member function call using a class pointer like

const jclass clazz = jenv->FindClass("java/lang/String");

To enable typemaps to be used for either C or C++ compilation, a set of JCALLx macros have been defined in Lib/java/javahead.swg, where x is the number of arguments in the C++ version
of the JNI call. The above JNI calls would be written in a typemap like this

const jclass clazz = JCALLI(FindClass, jenv, "java/lang/String");

Note that the SWIG preprocessor expands these into the appropriate C or C++ JNI calling convention. The C calling convention is emitted by default and the C++ calling convention is emitted
when using the -c++ SWIG commandline option. If you do not intend your code to be targeting both C and C++ then your typemaps can use the appropriate JNI calling convention and need
not use the JCALLx macros.

27.9.9 Java code typemaps

Most of SWIG's typemaps are used for the generation of C/C++ code. The typemaps in this section are used solely for the generation of Java code. Elements of proxy classes and type
wrapper classes come from the following typemaps (the defaults).

%typemap (javabase)

base (extends) for Java class: empty default

Note that this typemap accepts a replace attribute as an optional flag. When set to "1", it will replace/override any C++ base classes that might have been parsed. If this flag is not
specified and there are C++ base classes, then a multiple inheritance warning is issued and the code in the typemap is ignored. The typemap also accepts a notderived attribute as
an optional flag. When set to "1", it will not apply to classes that are derived from a C++ base. When used with the SWIGTYPE type, it is useful for giving a common base for all proxy
classes, that is, providing a base class that sits in between all proxy classes and the Java base class object for example: $typemap (javabase, notderived="1") SWIGTYPE
"CommonBase".

$typemap (javabody)

the essential support body for proxy classes (proxy base classes only), typewrapper classes and enum classes. Default contains extra constructors, memory ownership control
member variables (swigCMemOwn, swigCPtr), the getCPtr method etc.

$typemap (javabody_ derived)

the essential support body for proxy classes (derived classes only). Same as "javabody" typemap, but only used for proxy derived classes.
$typemap (javaclassmodifiers)

class modifiers for the Java class: default is "public class"
$typemap (javacode)

Java code is copied verbatim to the Java class: empty default As there can only be one "javacode" typemap per class, also consider using the %proxycode directive which can be
used multiple times per class and offers nearly identical functionality.

$typemap(javadestruct, methodname="delete", methodmodifiers="public synchronized", parameters="")

destructor wrapper - the delete () method (proxy classes only), used for all proxy classes except those which have a base class : default calls C++ destructor (or frees C memory)
and resets swigCPtr and swigCMemOwn flags

Note that the delete () method name is configurable and is specified by the methodname attribute. The method modifiers are also configurable via the methodmodifiers

attribute. If a $ javamethodmodifiers is attached to the class' destructor, it will be used in preference to the methodmodifiers typemap attribute for the class. The delete
method's parameters declaration can be provided in the optional parameters typemap attribute.

27.9 Java typemaps

SWIG-4.2 Documentation

$typemap(javadestruct_derived, methodname="delete", methodmodifiers="public synchronized", parameters="")

destructor wrapper - the delete () method (proxy classes only), same as "javadestruct" but only used for derived proxy classes : default calls C++ destructor (or frees C memory)
and resets swigCPtr and swigCMemOwn flags

Note that the delete () method name is configurable and is specified by the methodname attribute. The method modifiers are also configurable via the methodmodifiers
attribute. If a ¥ javamethodmodifiers is attached to the class' destructor, it will be used in preference to the methodmodifiers typemap attribute for the class. The delete
method's parameters declaration can be provided in the optional parameters typemap attribute.

%typemap (javaimports)

import statements for Java class: empty default
%typemap(javainterfaces)

interfaces (implements) for Java class: empty default
%typemap(javafinalize)

the finalize () method (proxy classes only): default calls the delete () method

Note that the default javafinalize typemap must contain the full implementation of the finalize method. Any customization to this typemap must still declare a java finalize method with
the correct signature. Note also that the name of the generated "delete” method may be affected by javadestruct and javadestruct_derived typemaps. Below shows an
example modifying the finalizer, assuming the delete method has been renamed toswig_delete.

%typemap(javafinalize) SWIGTYPE %{
protected void finalize() {
swig_delete(); // renamed to prevent conflict with existing delete method
}
1%

$typemap(javainterfacemodifiers)
Interface modifiers for the Java interface generated when using the interface feature, see Java interfaces section. The default is "public interface".
Compatibility note: This typemap was added in SWIG-4.1.0.
$typemap(javainterfacecode, declaration="...", cptrmethod="...")
The code in this typemap is added to the body of a Java proxy class but only when a class is marked with the interface feature. The typemap is used in the proxy class marked

with the interface feature as well as all proxy classes derived from the marked C++ class, as they are all generated as implementing the Java interface. The default typemap used in
the $interface family of macros mentioned in the Java interfaces section, where CTYPE is the C++ class macro argument, is as follows:

%typemap (javainterfacecode,
declaration=" long $interfacename GetInterfaceCPtr();\n",
cptrmethod="$interfacename GetInterfaceCPtr") CTYPE %{
public long $interfacename_GetInterfaceCPtr() {
return $imclassname.$javaclazzname$interfacename GetInterfaceCPtr(swigCPtr);
}
%}

The special variable $interfacename is expanded into the name specified in the interface feature.

Compatibility Note: In SWIG-1.3.21 and earlier releases, typemaps called "javagetcptr" and "javaptrconstructormodifiers" were available. These are deprecated and the "javabody" typemap
can be used instead. The javainterfacecode typemap and interface feature was introduced in SWIG-3.0.9.

In summary the contents of the typemaps make up a proxy class like this:

javaimports typemap]
javaclassmodifiers typemap] javaclassname extends [javabase typemap]
implements [javainterfaces typemap] {

javabody or javabody derived typemap]

[javafinalize typemap]

public synchronized void delete() [javadestruct OR javadestruct_derived typemap]
[javacode typemap]

[javainterfacecode typemap]

... proxy functions ...

}

Note the delete () methodname and method modifiers are configurable, see "javadestruct” and "javadestruct_derived" typemaps above.
The javainterfacecode typemap is only used when bases are marked by the interface feature and the implements list will also then be expanded to include these Java interfaces.

The type wrapper class is similar in construction:

[javaimports typemap]
[javaclassmodifiers typemap] javaclassname extends [javabase typemap]
implements [javainterfaces typemap] {
[javabody typemap]
[javacode typemap]
}

The enum class is also similar in construction:

[javaimports typemap]
[javaclassmodifiers typemap] javaclassname extends [javabase typemap]
implements [javainterfaces typemap] {
... Enum values ...
[javabody typemap]
[javacode typemap]
}

The "javaimports" typemap is ignored if the enum class is wrapped by an inner Java class, that is when wrapping an enum declared within a C++ class.

The Java interface turned on by the interface feature is fairly simple:

27.9 Java typemaps

284

SWIG-4.2 Documentation

[javaimports typemap]
[javainterfacemodifiers typemap] [javainterfacename] {
[javainterfacecode:cptrmethod typemap attribute]

. interface declarations ...

}

where javainterfacename is the name attribute in the interface feature.

The defaults can be overridden to tailor the generated classes. Here is an example which will change the getCPtr method and constructor from the default public access to protected access.
If the classes in one package are not using the classes in another package, then these methods need not be public and removing access to these low level implementation details, is a good
thing. If you are invoking SWIG more than once and generating the wrapped classes into different packages in each invocation, then you cannot do this as you will then have different
packages.

%typemap (javabody) SWIGTYPE $%{
private transient long swigCPtr;
protected transient boolean swigCMemOwn;

protected $javaclassname(long cPtr, boolean cMemoryOwn) {
swigCMemOwn = cMemoryOwn;
swigCPtr = cPtr;

}
protected static long getCPtr($javaclassname obj) {
return (obj == null) ? 0 : obj.swigCPtr;
}
%}

The typemap code is the same that is in "java.swg", barring the last two method modifiers. Note that SWIGTYPE will target all proxy classes, but not the type wrapper classes. Also the above
typemap is only used for proxy classes that are potential base classes. To target proxy classes that are derived from a wrapped class as well, the "javabody_derived" typemap should also be
overridden.

For the typemap to be used in all type wrapper classes, all the different types that type wrapper classes could be used for should be targeted:

$typemap (javabody) SWIGTYPE *, SWIGTYPE &, SWIGTYPE [], SWIGTYPE (CLASS::*) %{
private transient long swigCPtr;

protected $javaclassname(long cPtr, boolean bFutureUse) {
swigCPtr = cPtr;
}

protected $javaclassname() {
swigCPtr = 0;

}
protected static long getCPtr($javaclassname obj) {
return (obj == null) ? 0 : obj.swigCPtr;
}
%}

Again this is the same that is in "java. swg", barring the method modifier for getCcptr.

When using multiple modules or the nspace feature it is common to invoke SWIG with a different-package command line option for each module. However, by default the generated code
may not compile if generated classes in one package use generated classes in another package. The visibility of the getCPtr () and pointer constructor generated from the javabody
typemaps needs changing. The default visibility is protected but it needs to be public for access from a different package. Just changing 'protected' to 'public’ in the typemap achieves this.
Two macros are available in java.swg to make this easier and using them is the preferred approach over simply copying the typemaps and modifying as this is forward compatible with any
changes in the javabody typemap in future versions of SWIG. The macros are for the proxy and typewrapper classes and can respectively be used to to make the method and constructor
public:

SWIG_JAVABODY_ PROXY(public, public, SWIGTYPE)
SWIG_JAVABODY_ TYPEWRAPPER(public, public, public, SWIGTYPE)

27.9.10 Director specific typemaps

The Java directors feature requires the "javadirectorin”, "javadirectorout”, "directorin” and the "directorout" typemaps in order to work properly. The "javapackage" typemap is an optional
typemap used to identify the Java package path for individual SWIG generated proxy classes used in director methods.

%typemap (directorin)

The "directorin" typemap is used for converting arguments in the C++ director class to the appropriate JNI type before the upcall to Java. This typemap also specifies the JNI field
descriptor for the type in the "descriptor" attribute. For example, integers are converted as follows:

%typemap(directorin, descriptor="I") int "$input = (jint) $1;"

$input is the SWIG name of the JNI temporary variable passed to Java in the upcall. The descriptor="1" will put an I into the JNI field descriptor that identifies the Java method
that will be called from C++. For more about JNI field descriptors and their importance, refer to the JNI documentation mentioned earlier. A typemap for C character strings is:

$typemap(directorin, descriptor="Ljava/lang/String;", noblock=1) char * {
$input = 0;
if ($1) {
$input = JCALL1(NewStringUTF, jenv, (const char *)$1);
if (!$input) return $null;
}
Swig::LocalRefGuard $1_refguard(jenv, $input);

The swig: :LocalRefGuard class should be used in directorin typemaps for newly allocated objects. It is used to control local reference counts ensuring the count is decremented
after the call up into Java has completed. Its destructor simply calls jenv->DeleteLocalRef (obj) on the obj passed in during construction.

User-defined types have the default "descriptor" attribute " L$packagepath/$javaclassname;" where $packagepath is the package name passed from the SWIG command

line and $javaclassname is the Java proxy class' name. If the-package commandline option is not used to specify the package, then '$packagepath/’ will be removed from the
resulting output JNI field descriptor. Do not forget the terminating ;' for JNI field descriptors starting with 'L'". If the ';' is left out, Java will generate a "method not found" runtime

27.9 Java typemaps 285

SWIG-4.2 Documentation

error. Note that the $packagepath substitution always uses the path separator /' when expanded. The $ javaclassname expansion can be confusing as it is normally expanded
using the "' separator. However, $ javaclassname is expanded using the path separator /' in typemap's "descriptor" attribute as well as in the "directorthrows" typemap.

$typemap (directorout)

The "directorout" typemap is used for converting the JNI return type in the C++ director class to the appropriate C++ type after the upcall to Java. For example, integers are converted
as follows:

%typemap(directorout) int %{ $result = (int)$input; %}

$input is the SWIG name of the JNI temporary variable returned from Java after the upcall. $result is the resulting output. A typemap for C character strings is:

%typemap(directorout) char * {
$1.=0;
if ($input) {
$result = (char *)jenv->GetStringUTFChars($input, 0);
if (!$1) return $null;
}
}

$typemap (javadirectorin)

Conversion from jtype to jstype for director methods. These are Java code typemaps which transform the type used in the Java intermediary JNI class (as specified in the "jtype"
typemap) to the Java type used in the Java module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap). This typemap provides the conversion for
the parameters in the director methods when calling up from C++ to Java.

For primitive types, this typemap is usually specified as:

%typemap(javadirectorin) int "$jniinput"

The $jniinput special variable is analogous to $ javainput special variable. It is replaced by the input parameter name.
$typemap (javadirectorout)

Conversion from jstype to jtype for director methods. These are Java code typemaps which transform the type used in the Java module class, proxy classes and type wrapper classes
(as specified in the "jstype" typemap) to the type used in the Java intermediary JNI class (as specified in the "jtype" typemap). This typemap provides the conversion for the return
type in the director methods when returning from the C++ to Java upcall.

For primitive types, this typemap is usually specified as:

%typemap(javadirectorout) int "$javacall"

The $javacall special variable is analogous to the $ jnicall special variable. It is replaced by the call to the target Java method. The target method is the method in the Java
proxy class which overrides the virtual C++ method in the C++ base class.

$typemap (directorthrows)

Conversion of Java exceptions to C++ exceptions in director method's exception handling. This typemap is expected to test the $error special variable for a matching Java exception
and if successful convert and throw it into a C++ exception given by the typemap's type. The $error special variable is of type jthrowable and is substituted with a unique variable
name in the generated code.

The example below converts a Java java.lang.IndexOutOfBoundsException exception to the typemap's type, thatis std: :out_of_range:

$typemap(directorthrows) std::out _of range %{
if (Swig::ExceptionMatches(jenv, $error, "java/lang/IndexOutOfBoundsException")) {
throw std::out_of_range(Swig::JavaExceptionMessage(jenv, $error).message());
}
%}

The utility function Swig: : ExceptionMatches and class Swig: : JavaExceptionMessage are helpers available when using directors and are described in the Java Exceptions
from Directors section.

$typemap (javapackage)

The "javapackage" typemap is optional; it serves to identify a class's Java package. This typemap should be used in conjunction with classes that are defined outside of the current
SWIG interface file. The typemap is only used if the type is used in a director method, that is, in a virtual method in a director class. For example:

// class Foo is handled in a different interface file:
%import "Foo.i"

%feature("director") Example;

%inline {
class Bar { };

class Example {
public:
virtual ~Example();
virtual void ping(Foo *argl, Bar *arg2);
Yi
}

Assume that the Foo class is part of the Java package com.wombat.foo but the above interface file is part of the Java package com.wombat.example. Without the "javapackage"
typemap, SWIG will assume that the Foo class belongs to com.wombat.example class. The corrected interface file looks like:

// class Foo is handled in a different interface file:
%import "Foo.i"

%typemap (" javapackage") Foo, Foo *, Foo & "com.wombat.foo"
%feature("director") Example;

%inline {
class Bar { };

27.9 Java typemaps

SWIG-4.2 Documentation

class Example {
public:
virtual ~Example();
virtual void ping(Foo *argl, Bar *arg2);

Yi

SWIG looks up the package based on the actual type (plain Foo, Foo pointer and Foo reference), so it is important to associate all three types with the desired package. Practically
speaking, you should create a separate SWIG interface file, which is %import-ed into each SWIG interface file, when you have multiple Java packages. Note the helper macros below,
OTHER _PACKAGE_SPEC and ANOTHER_PACKAGE_SPEC, which reduce the amount of extra typing. " TYPE. . ." is useful when passing templated types to the macro, since
multiargument template types appear to the SWIG preprocessor as multiple macro arguments.

$typemap (" javapackage") SWIGTYPE, SWIGTYPE *, SWIGTYPE &
"package.for.most.classes";

$define OTHER_PACKAGE_SPEC(TYPE...)
%typemap("javapackage") TYPE, TYPE *, TYPE & "package.for.other.classes"
%enddef

$define ANOTHER_ PACKAGE_SPEC(TYPE...)
%typemap (" javapackage") TYPE, TYPE *, TYPE & "package.for.another.set"
%enddef

OTHER_PACKAGE_SPEC (Package 2_class_one)
ANOTHER_PACKAGE_SPEC (Package_3_class_two)
/* etc */

The basic strategy here is to provide a default package typemap for the majority of the classes, only providing "javapackage" typemaps for the exceptions.
27.10 Typemap Examples

This section includes a few examples of typemaps. For more examples, you might look at the files "java.swg" and "typemaps . i " in the SWIG library.
27.10.1 Simpler Java enums for enums without initializers

The default Proper Java enums approach to wrapping enums is somewhat verbose. This is to handle all possible C/C++ enums, in particular enums with initializers. The generated code can be
simplified if the enum being wrapped does not have any initializers.

The following shows how to remove the support methods that are generated by default and instead use the methods in the Java enum base class java.lang.Enumand java.lang.Class
for marshalling enums between C/C++ and Java. The type used for the typemaps below is enum SWIGTYPE which is the default type used for all enums. The "enums.swg" file should be
examined in order to see the original overridden versions of the typemaps.

%include "enums.swg"

%typemap(javain) enum SWIGTYPE "$javainput.ordinal()"
$typemap(javaout) enum SWIGTYPE {
return $javaclassname.class.getEnumConstants()[$jnicall];
}
%typemap (javabody) enum SWIGTYPE ""

%inline %{
enum HairType { blonde, ginger, brunette };
void setHair(HairType h);
HairType getHair();

%}

SWIG will generate the following Java enum, which is somewhat simpler than the default:

public enum HairType {
blonde,
ginger,
brunette;

}

and the two Java proxy methods will be:

public static void setHair(HairType h) {
exampleJNI.setHair (h.ordinal());
}

public static HairType getHair() {
return HairType.class.getEnumConstants()[exampleJNI.getHair()];

}

For marshalling Java enums to C/C++ enums, the ordinal method is used to convert the Java enum into an integer value for passing to the JNI layer, see the "javain" typemap. For
marshalling C/C++ enums to Java enums, the C/C++ enum value is cast to an integer in the C/C++ typemaps (not shown). This integer value is then used to index into the array of enum
constants that the Java language provides. See the getEnumConstants method in the "javaout" typemap.

These typemaps can often be used as the default for wrapping enums as in many cases there won't be any enum initializers. In fact a good strategy is to always use these typemaps and to
specifically handle enums with initializers using %apply. This would be done by using the original versions of these typemaps in "enums.swg" under another typemap name for applying using
%apply.

27.10.2 Handling C++ exception specifications as Java exceptions

This example demonstrates various ways in which C++ exceptions can be tailored and converted into Java exceptions. Let's consider a simple file class SimpleFile and an exception class
FileException which it may throw on error:

%$include "std_string.i" // for std::string typemaps
#include <string>

class FileException {

27.10 Typemap Examples

287

SWIG-4.2 Documentation

std::string message;
public:
FileException(const std::string& msg) : message(msg) {}
std::string what() {
return message;
}
Yi

class SimpleFile {
std::string filename;
public:
SimpleFile(const std::string& filename) : filename(filename) {}
void open() throw(FileException) {
}
b

As the open method has a C++ exception specification, SWIG will parse this and know that the method can throw an exception. The "throws" typemap is then used when SWIG encounters an
exception specification. The default generic "throws" typemap looks like this:

$typemap(throws) SWIGTYPE, SWIGTYPE &, SWIGTYPE *, SWIGTYPE [ANY] 3%{
SWIG_JavaThrowException(jenv, SWIG_JavaRuntimeException,
"C++ $1_type exception thrown");
return $null;
%}

Basically SWIG will generate a C++ try catch block and the body of the "throws" typemap constitutes the catch block. The above typemap calls a SWIG supplied method which throws a
java.lang.RuntimeException. This exception class is a runtime exception and therefore not a checked exception. If, however, we wanted to throw a checked exception, say
java.io.IOException, then we could use the following typemap:

%typemap (throws, throws="java.io.IOException") FileException {
jclass excep = jenv->FindClass("java/io/IOException");
if (excep)
jenv->ThrowNew(excep, $l.what().c_str());
return $null;

Note that this typemap uses the 'throws' typemap attribute to ensure a throws clause is generated. The generated proxy method then specifies the checked exception by containing
java.io.IOException in the throws clause:

public class SimpleFile {
public void open() throws java.io.IOException { ... }

}

Lastly, if you don't want to map your C++ exception into one of the standard Java exceptions, the C++ class can be wrapped and turned into a custom Java exception class. If we go back to
our example, the first thing we must do is get SWIG to wrap FileException and ensure that it derives from java.lang.Exception. Additionally, we might want to override the
java.lang.Exception.getMessage () method. The typemaps to use then are as follows:

%typemap (javabase) FileException "java.lang.Exception"
%typemap (javacode) FileException %{
public String getMessage() {
return what();
}
%}

This generates:

public class FileException extends java.lang.Exception {
public String getMessage() {
return what();

}
public FileException(String msg) { ... }
public String what() {

return exampleJNI.FileException what(swigCPtr, this);

}

We could alternatively have used $rename to renamewhat () into getMessage().
27.10.3 NaN Exception - exception handling for a particular type

A Java exception can be thrown from any Java or JNI code. Therefore, as most typemaps contain either Java or JNI code, just about any typemap could throw an exception. The following
example demonstrates exception handling on a type by type basis by checking for 'Not a number' (NaN) whenever a parameter of type f1loat is wrapped.

Consider the following C++ code:

bool calculate(float first, float second);

To validate every float being passed to C++, we could precede the code being wrapped by the following typemap which throws a runtime exception whenever the £loat is 'Not a Number":

%module example
%typemap(javain) float "$module.CheckForNaN($javainput)"
%pragma(java) modulecode=%{
/** Simply returns the input value unless it is not a number,
whereupon an exception is thrown. */
static protected float CheckForNaN(float num) {

27.10 Typemap Examples

file:///home/william/swig/github/swig/Tools/swig-4.2.1/Doc/Manual/Typemaps.html#throws_typemap

SWIG-4.2 Documentation

if (Float.isNaN(num))
throw new RuntimeException("Not a number");
return num;
}
%}

Note that the CheckForNaN support method has been added to the module class using the modulecode pragma. The following shows the generated code of interest:

public class example {

/** Simply returns the input value unless it is not a number,
whereupon an exception is thrown. */
static protected float CheckForNaN(float num) {
if (Float.isNaN(num))
throw new RuntimeException("Not a number");
return num;

}

public static boolean calculate(float first, float second) {
return exampleJNI.calculate(example.CheckForNaN(first), example.CheckForNaN(second));

}

Note that the "javain" typemap is used for every occurrence of a £1loat being used as an input. Of course, we could have targeted the typemap at a particular parameter by using float
first, say, instead of just £loat.

The exception checking could alternatively have been placed into the 'pre' attribute that the "javain” typemap supports. The "javain" typemap above could be replaced with the following:

%typemap(javain, pre=" $module.CheckForNaN($javainput);") float "$javainput"

which would modify the calculate function to instead be generated as:

public class example {
public static boolean calculate(float first, float second) {
example.CheckForNaN(first);
example.CheckForNaN(second) ;
{

return exampleJNI.calculate(first, second);

}

See the Date marshalling example for an example using further "javain" typemap attributes.

If we decide that what we actually want is a checked exception instead of a runtime exception, we can change this easily enough. The proxy method that uses float as an input, must then
add the exception class to the throws clause. SWIG can handle this as it supports the 'throws' typemap attribute for specifying classes for the throws clause. Thus we can modify the pragma
and the typemap for the throws clause:

%typemap(javain, throws="java.lang.Exception") float "$module.CheckForNaN($javainput)"
%pragma(java) modulecode=%{
/** Simply returns the input value unless it is not a number,
whereupon an exception is thrown. */
static protected float CheckForNaN(float num) throws java.lang.Exception {
if (Float.isNaN(num))
throw new RuntimeException("Not a number");
return num;
}
%}

The calculate method now has a throws clause and even though the typemap is used twice for both float first and float second, the throws clause contains a single instance of
java.lang.Exception

public class example {

/** Simply returns the input value unless it is not a number,
whereupon an exception is thrown. */
static protected float CheckForNaN(float num) throws java.lang.Exception {
if (Float.isNaN(num))
throw new RuntimeException("Not a number");
return num;

}

public static boolean calculate(float first, float second) throws java.lang.Exception {
return exampleJNI.calculate(example.CheckForNaN(first), example.CheckForNaN(second));

}

If we were a martyr to the JNI cause, we could replace the succinct code within the "javain" typemap with a few pages of JNI code. If we had, we would have put it in the "in" typemap which,
like all JNI and Java typemaps, also supports the 'throws' attribute.

27.10.4 Converting Java String arrays to char **

A common problem in many C programs is the processing of command line arguments, which are usually passed in an array of NULL terminated strings. The following SWIG interface file
allows a Java String array to be used as a char ** object.

gmodule example

/* This tells SWIG to treat char ** as a special case when used as a parameter

27.10 Typemap Examples

SWIG-4.2 Documentation

in a function call */
%typemap(in) char ** (jint size) {

int i = 0;

size = (*jenv)->GetArrayLength(jenv, $input);

$1 = (char **) malloc((size+l)*sizeof(char *));

/* make a copy of each string */

for (i = 0; i<size; i++) {
jstring j_string = (jstring)(*jenv)->GetObjectArrayElement(jenv, $input, i);
const char * c_string = (*jenv)->GetStringUTFChars(jenv, j_string, 0);
$1[i] = malloc((strlen(c_string)+1)*sizeof(char));
strcpy($1[i], c_string);
(*jenv)->ReleaseStringUTFChars(jenv, j_string, c_string);
(*jenv)->DeleteLocalRef (jenv, j_string);

}
$1[i] = 0;
}

/* This cleans up the memory we malloc'd before the function call */
%typemap(freearg) char ** {
int i;
for (i=0; i<size$Sargnum-1; i++)
free($1(i]);
free($1);
}

/* This allows a C function to return a char ** as a Java String array */
$typemap(out) char ** {

int ij;

int len=0;

jstring temp_string;

const jclass clazz = (*jenv)->FindClass(jenv, "java/lang/String");

while ($1[len]) lent++;
jresult = (*jenv)->NewObjectArray(jenv, len, clazz, NULL);
/* exception checking omitted */

for (i=0; i<len; i++) {
temp_string = (*jenv)->NewStringUTF(jenv, *result++);
(*jenv)->SetObjectArrayElement(jenv, jresult, i, temp_string);
(*jenv)->DeleteLocalRef(jenv, temp_ string);
}
}

/* These 3 typemaps tell SWIG what JNI and Java types to use */
%typemap(jni) char ** "jobjectArray"

%typemap(jtype) char ** "String[]"

%typemap(jstype) char ** "String[]"

/* These 2 typemaps handle the conversion of the jtype to jstype typemap type
and vice versa */

%typemap(javain) char ** "$javainput"

%typemap(javaout) char ** {
return $jnicall;

}

/* Now a few test functions */
%inline %{

int print_args(char **argv) {
int i = 0;
while (argv[i]) {
printf("argv[%d] = %s\n", i, argv[i]);
i++;
}
return ij;

}

char **get_args() {
static char *values[] = { "Dave", "Mike", "Susan", "John", "Michelle", 0};
return &values[0];

}

%}

Note that the 'C' NI calling convention is used. Checking for any thrown exceptions after JNI function calls has been omitted. When this module is compiled, our wrapped C functions can be

used by the following Java program:

// File runme.java
public class runme {

static {
try {
System.loadLibrary("example");
} catch (UnsatisfiedLinkError e) {
System.err.println("Native code library failed to load. " + e);
System.exit(1l);

}

public static void main(String argv[]) {
String animals[] = {"Cat", "Dog", "Cow", "Goat"};
example.print_args(animals);
String args[] = example.get_args();
for (int i=0; i<args.length; i++)
System.out.println(i + ":" + args[i]);

27.10 Typemap Examples

290

SWIG-4.2 Documentation

When compiled and run we get:

$ java runme
argv[0] = Cat
argv[1l] = Dog
argv[2] = Cow
argv[3] = Goat
0:Dave

1:Mike

2:Susan

3:John
4:Michelle

In the example, a few different typemaps are used. The "in" typemap is used to receive an input argument and convert it to a C array. Since dynamic memory allocation is used to allocate
memory for the array, the "freearg" typemap is used to later release this memory after the execution of the C function. The "out" typemap is used for function return values. Lastly the "jni",
"jtype" and "jstype" typemaps are also required to specify what Java types to use.

27.10.5 Expanding a Java object to multiple arguments

Suppose that you had a collection of C functions with arguments such as the following:

int foo(int argc, char **argv);

In the previous example, a typemap was written to pass a Java String array as the char **argv. This allows the function to be used from Java as follows:

example.foo(4, new String[]{"red", "green", "blue", "white"});

Although this works, it's a little awkward to specify the argument count. To fix this, a multi-argument typemap can be defined. This is not very difficult--you only have to make slight
modifications to the previous example's typemaps:

%typemap(in) (int argc, char **argv) {

int i = 0;
$1 = (*jenv)->GetArrayLength(jenv, $input);
$2 = (char **) malloc(($1+1l)*sizeof(char *));

/* make a copy of each string */

for (i = 0; i<$1; i++) {
jstring j_string = (jstring)(*jenv)->GetObjectArrayElement(jenv, $input, i);
const char * c_string = (*jenv)->GetStringUTFChars(jenv, j_string, 0);
$2[i] = malloc((strlen(c_string)+l)*sizeof(char));
strcpy($2[i], c_string);
(*jenv)->ReleaseStringUTFChars(jenv, j_string, c_string);
(*jenv)->DeleteLocalRef(jenv, j_string);

}

$2[i] = 0;

}

%typemap(freearg) (int argc, char **argv) {

int i;

for (i=0; i<$1-1; i++)

free($2[i]);

free($2);
}
%typemap(jni) (int argc, char **argv) "jobjectArray"
%typemap(jtype) (int argc, char **argv) "String[]"
%typemap(jstype) (int argc, char **argv) "String[]"

%typemap(javain) (int argc, char **argv) "$javainput"

When writing a multiple-argument typemap, each of the types is referenced by a variable such as $1 or $2. The typemap code simply fills in the appropriate values from the supplied Java
parameter.

With the above typemap in place, you will find it no longer necessary to supply the argument count. This is automatically set by the typemap code. For example:

example.foo(new String[]{"red", "green", "blue", "white"});

27.10.6 Using typemaps to return arguments

A common problem in some C programs is that values may be returned in function parameters rather than in the return value of a function. The typemaps. i file defines INPUT, OUTPUT and
INOUT typemaps which can be used to solve some instances of this problem. This library file uses an array as a means of moving data to and from Java when wrapping a C function that takes
non const pointers or non const references as parameters.

Now we are going to outline an alternative approach to using arrays for C pointers. The INOUT typemap uses a double[] array for receiving and returning the double* parameters. In this
approach we are able to use a Java class myDouble instead of double[] arrays where the C pointerdouble* is required.

Here is our example function:

/* Returns a status value and two values in outl and out2 */
int spam(double a, double b, double *outl, double *out2);

If we define a structure MyDouble containing a double member variable and use some typemaps we can solve this problem. For example we could put the following through SWIG:

%module example

/* Define a new structure to use instead of double * */
%inline %{
typedef struct {
double value;
} MyDouble;
%}

27.10 Typemap Examples

SWIG-4.2 Documentation

%4
/* Returns a status value and two values in outl and out2 */
int spam(double a, double b, double *outl, double *out2) {
int status = 1;
*outl = a*10.0;
*out2 = b*100.0;
return status;
}
%}

/*
This typemap will make any double * function parameters with name OUTVALUE take an
argument of MyDouble instead of double *. This will
allow the calling function to read the double * value after returning from the function.
*/
%typemap(in) double *OUTVALUE {
jclass clazz = jenv->FindClass("MyDouble");
jfieldID fid = jenv->GetFieldID(clazz, "swigCPtr", "J");
jlong cPtr = jenv->GetLongField($input, fid);
MyDouble *pMyDouble = NULL;
* (MyDouble **)g&pMyDouble = *(MyDouble **)&cPtr;
$1 = &pMyDouble->value;
}

%typemap(jtype) double *OUTVALUE "MyDouble"
%typemap(jstype) double *OUTVALUE "MyDouble"
%typemap(jni) double *OUTVALUE "jobject"

%typemap(javain) double *OUTVALUE "$javainput"
/* Now we apply the typemap to the named variables */

%apply double *OUTVALUE { double *outl, double *out2 };
int spam(double a, double b, double *outl, double *out2);

Note that the C++ JNI calling convention has been used this time and so must be compiled as C++ and the -c++ commandline must be passed to SWIG. JNI error checking has been omitted
for clarity.

What the typemaps do are make the named double* function parameters use our new MyDouble wrapper structure. The "in" typemap takes this structure, gets the C++ pointer to it, takes
the double value member variable and passes it to the C++spam function. In Java, when the function returns, we use the SWIG created getvalue () function to get the output value. The
following Java program demonstrates this:

// File: runme.java
public class runme {

static {
try {
System.loadLibrary("example");
} catch (UnsatisfiedLinkError e) {
System.err.println("Native code library failed to load. " + e);
System.exit(1l);
}
}

public static void main(String argv[]) {
MyDouble outl = new MyDouble();
MyDouble out2 = new MyDouble();
int ret = example.spam(1l.2, 3.4, outl, out2);
System.out.println(ret + " " + outl.getValue() + " " + out2.getValue());

When compiled and run we get:

$ java runme
1 12.0 340.0

27.10.7 Adding Java downcasts to polymorphic return types

SWIG support for polymorphism works in that the appropriate virtual function is called. However, the default generated code does not allow for downcasting. Let's examine this with the
following code:

%$include "std_string.i"

#include <iostream>
using namespace std;
class Vehicle {
public:
virtual void start() = 0;

class Ambulance : public Vehicle {
string vol;
public:
Ambulance(string volume) : vol(volume) {}
virtual void start() {
cout << "Ambulance started" << endl;

}
void sound_siren() {
cout << vol << " siren sounded!" << endl;
}
}i

27.10 Typemap Examples

SWIG-4.2 Documentation

Vehicle *vehicle factory() {
return new Ambulance("Very loud");

}

If we execute the following Java code:

Vehicle vehicle = example.vehicle factory();
vehicle.start();

Ambulance ambulance = (Ambulance)vehicle;
ambulance.sound_siren();

We get:

Ambulance started
java.lang.ClassCastException
at runme.main(runme.java:16)

Even though we know from examination of the C++ code that vehicle_factory returns an object of type Ambulance, we are not able to use this knowledge to perform the downcast in
Java. This occurs because the runtime type information is not completely passed from C++ to Java when returning the type from vehicle_factory (). Usually this is not a problem as virtual
functions do work by default, such as in the case of start (). There are a few solutions to getting downcasts to work.

The first is not to use a Java cast but a call to C++ to make the cast. Add this to your code:

$exception Ambulance::dynamic_cast(Vehicle *vehicle) {
Saction
if (!result) {
jclass excep = jenv->FindClass("java/lang/ClassCastException");
if (excep) {
jenv->ThrowNew (excep, "dynamic_cast exception");
}
}
}
%extend Ambulance {
static Ambulance *dynamic_cast(Vehicle *vehicle) {
return dynamic_cast<Ambulance *>(vehicle);
}
}i

It would then be used from Java like this

Ambulance ambulance = Ambulance.dynamic_cast(vehicle);
ambulance.sound _siren();

Should vehicle not be of typeambulance then a Java ClassCastException is thrown. The next solution is a purer solution in that Java downcasts can be performed on the types. Add
the following before the definition of vehicle factory:

%typemap(out) Vehicle * {
Ambulance *downcast = dynamic_cast<Ambulance *>($1);
* (Ambulance **)&$result = downcast;

}

%typemap(javaout) Vehicle * {
return new Ambulance($jnicall, $owner);

}

Here we are using our knowledge that vehicle_factory always returns type Ambulance so that the Java proxy is created as a type Ambulance. If vehicle_factory can manufacture
any type of Vehicle and we want to be able to downcast using Java casts for any of these types, then a different approach is needed. Consider expanding our example with a new Vehicle
type and a more flexible factory function:

class FireEngine : public Vehicle {
public:
FireEngine() {}
virtual void start() {
cout << "FireEngine started" << endl;
}
void roll out_hose() {
cout << "Hose rolled out" << endl;

}
}i
Vehicle *vehicle factory(int vehicle_number) {
if (vehicle number == 0)
return new Ambulance("Very loud");
else

return new FireEngine();

To be able to downcast with this sort of Java code:

FireEngine fireengine = (FireEngine)example.vehicle factory(l);
fireengine.roll out_hose();

Ambulance ambulance = (Ambulance)example.vehicle factory(0);
ambulance.sound_siren();

the following typemaps targeted at the vehicle_factory function will achieve this. Note that in this case, the Java class is constructed using JNI code rather than passing a pointer across
the JNI boundary in a Java long for construction in Java code.

27.10 Typemap Examples

SWIG-4.2 Documentation

$typemap(jni) Vehicle *vehicle factory "jobject"
$typemap(jtype) Vehicle *vehicle_factory "Vehicle"
$typemap(jstype) Vehicle *vehicle factory "Vehicle"
$typemap(javaout) Vehicle *vehicle_ factory {

return $jnicall;

}

$typemap(out) Vehicle *vehicle_factory {
Ambulance *ambulance = dynamic_cast<Ambulance *>($1);
FireEngine *fireengine = dynamic_cast<FireEngine *>($1);
if (ambulance) {
// call the Ambulance(long cPtr, boolean cMemoryOwn) constructor
jclass clazz = jenv->FindClass("Ambulance");
if (clazz) {
jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(Jz)V");
if (mid) {
jlong cptr = 0;
*(Ambulance **)&cptr = ambulance;
$result = jenv->NewObject(clazz, mid, cptr, false);

}
}
} else if (fireengine) {
// call the FireEngine(long cPtr, boolean cMemoryOwn) constructor
jclass clazz = jenv->FindClass("FireEngine");
if (clazz) {
jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");
if (mid) {
jlong cptr = 0;
*(FireEngine **)&cptr = fireengine;
$result = jenv->NewObject(clazz, mid, cptr, false);
}
}
}
else {
cout << "Unexpected type " << endl;
}

if (!$result)
cout << "Failed to create new java object" << endl;

Better error handling would need to be added into this code. There are other solutions to this problem, but this last example demonstrates some more involved JNI code. SWIG usually
generates code which constructs the proxy classes using Java code as it is easier to handle error conditions and is faster. Note that the JNI code above uses a number of string lookups to call
a constructor, whereas this would not occur using byte compiled Java code.

27.10.8 Adding an equals method to the Java classes

When a pointer is returned from a JNI function, it is wrapped using a new Java proxy class or type wrapper class. Even when the pointers are the same, it will not be possible to know that the
two Java classes containing those pointers are actually the same object. It is common in Java to use the equals () method to check whether two objects are equivalent. The equals ()
method is usually accompanied by a hashCode () method in order to fulfill the requirement that the hash code is equal for equal objects. Pure Java code methods like these can be easily
added:

%typemap (javacode) SWIGTYPE %{
public boolean equals(Object obj) {
boolean equal = false;
if (obj instanceof $javaclassname)
equal = ((($javaclassname)obj).swigCPtr == this.swigCPtr);
return equal;
}
public int hashCode() {
return (int)getPointer();
}
%}

class Foo { };
Foo* returnFoo(Foo *foo) { return foo; }

The following would display false without the javacode typemap above. With the typemap defining the equals method the result is true.

Foo fool = new Foo();
Foo foo2 = example.returnFoo(fool);
System.out.println("fool? " + fool.equals(foo2));

27.10.9 Void pointers and a common Java base class

One might wonder why the common code that SWIG emits for the proxy and type wrapper classes is not pushed into a base class. The reason is that although swigCPtr could be put into a
common base class for all classes wrapping C structures, it would not work for C++ classes involved in an inheritance chain. Each class derived from a base needs a separate swigCPtr
because C++ compilers sometimes use a different pointer value when casting a derived class to a base. Additionally as Java only supports single inheritance, it would not be possible to derive
wrapped classes from your own pure Java classes if the base class has been 'used up' by SWIG. However, you may want to move some of the common code into a base class. Here is an
example which uses a common base class for all proxy classes and type wrapper classes:

$typemap(javabase) SWIGTYPE, SWIGTYPE *, SWIGTYPE &, SWIGTYPE [],
SWIGTYPE (CLASS::*) "SWIG"

stypemap (javacode) SWIGTYPE, SWIGTYPE *, SWIGTYPE &, SWIGTYPE [],
SWIGTYPE (CLASS::*) %{
protected long getPointer() {
return swigCPtr;
}
%}

Define new base class called SWIG:

27.10 Typemap Examples

SWIG-4.2 Documentation

public abstract class SWIG {
protected abstract long getPointer();

public boolean equals(Object obj) {
boolean equal = false;
if (obj instanceof SWIG)
equal = (((SWIG)obj).getPointer() == this.getPointer());
return equal;

}

SWIGTYPE p_void getVoidPointer() {
return new SWIGTYPE_p void(getPointer(), false);
}

This example contains some useful functionality which you may want in your code.
« It has an equals () method. Unlike the previous example, the method code isn't replicated in all classes.
« It also has a function which effectively implements a cast from the type of the proxy/type wrapper class to a void pointer. This is necessary for passing a proxy class or a type wrapper
class to a function that takes a void pointer.
27.10.10 Struct pointer to pointer

Pointers to pointers are often used as output parameters in C factory type functions. These are a bit more tricky to handle. Consider the following situation where a Butler can be hired and
fired:

typedef struct {
int hoursAvailable;
char *greeting;

} Butler;

// Note: HireButler will allocate the memory

// The caller must free the memory by calling FireButler()!!
extern int HireButler(Butler **ppButler);

extern void FireButler (Butler *pButler);

C code implementation:

int HireButler(Butler **ppButler) {
Butler *pButler = (Butler *)malloc(sizeof(Butler));
pButler->hoursAvailable = 24;
pButler->greeting = (char *)malloc(32);
strcpy(pButler->greeting, "At your service Sir");
*ppButler = pButler;
return 1;

}

void FireButler (Butler *pButler) {
free(pButler->greeting);
free(pButler);

}

Let's take two approaches to wrapping this code. The first is to provide a functional interface, much like the original C interface. The following Java code shows how we intend the code to be
used:

Butler jeeves = new Butler();

example.HireButler(jeeves);

System.out.println("Greeting: " + jeeves.getGreeting());
System.out.println("Availability: " + jeeves.getHoursAvailable() + " hours per day");
example.FireButler(jeeves);

Resulting in the following output when run:

Greeting: At your service Sir
Availability: 24 hours per day

Note the usage is very much like it would be used if we were writing C code, that is, explicit memory management is needed. No C memory is allocated in the construction of the Butler proxy
class and the proxy class will not destroy the underlying C memory when it is collected. A number of typemaps and features are needed to implement this approach. The following interface file
code should be placed before SWIG parses the above C code.

%module example

// Do not generate the default proxy constructor or destructor
%nodefaultctor Butler;
%nodefaultdtor Butler;

// Add in pure Java code proxy constructor
%typemap (javacode) Butler %{
/** This constructor creates the proxy which initially does not create nor own any C memory */
public Butler() {
this(0, false);
}
%}

// Type typemaps for marshalling Butler **
%typemap(jni) Butler ** "jobject"
%typemap(jtype) Butler ** "Butler"
%typemap(jstype) Butler ** "Butler"

// Typemaps for Butler ** as a parameter output type
%typemap(in) Butler ** (Butler *ppButler = 0) %{

$1 = &ppButler;
%}

27.10 Typemap Examples

SWIG-4.2 Documentation

$typemap(argout) Butler ** {
// Give Java proxy the C pointer (of newly created object)
jclass clazz = (*jenv)->FindClass(jenv, "Butler");
jfieldID fid = (*jenv)->GetFieldID(jenv, clazz, "swigCPtr", "J");
jlong cPtr = 0;
*(Butler **)&cPtr = *$1;
(*jenv)->SetLongField(jenv, $input, fid, cPtr);
}

%typemap(javain) Butler ** "$javainput"

Note that the JNI code sets the proxy's swigCPtr member variable to point to the newly created object. The swigCMemOwn remains unchanged (at false), so that the proxy does not own the
memory.

Note: The old %nodefault directive disabled the default constructor and destructor at the same time. This is unsafe in most of the cases, and you can use the explicit %nodefaultctor and
%nodefaultdtor directives to achieve the same result if needed.

The second approach offers a more object oriented interface to the Java user. We do this by making the Java proxy class's constructor call the HireButler () method to create the
underlying C object. Additionally we get the proxy to take ownership of the memory so that the finalizer will call the FireButler () function. The proxy class will thus take ownership of the
memory and clean it up when no longer needed. We will also prevent the user from being able to explicitly call the HireButler () and FireButler () functions. Usage from Java will simply
be:

Butler jeeves = new Butler();
System.out.println("Greeting: " + jeeves.getGreeting());
System.out.println("Availability: " + jeeves.getHoursAvailable() + " hours per day");

Note that the Butler class is used just like any other Java class and no extra coding by the user needs to be written to clear up the underlying C memory as the finalizer will be called by the
garbage collector which in turn will call the FireButler () function. To implement this, we use the above interface file code but remove the javacode typemap and add the following:

// Don't expose the memory allocati